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MyDB1

MyDB2 MyDB3

MyDB4

P2P Network formed by MyDBs

Catalog
Archive
Servers

RA DEC Vel Disp
Surface

Brightness
Eff Radius

12.35 123.768 342 12.35 34.89

RA DEC Vel Disp
Surface

Brightness
Eff Radius

4.32 12.45 125 17.67 67.211

RA DEC Vel Disp
Surface

Brightness
Eff Radius

15.798 35.76 125 56 78.67
56.89 167.89 56.89 32.67 89.002

RA DEC Vel Disp
Surface

Brightness
Eff Radius

23.67 134.789 45.89 18.56 98.01
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Abstract

The design, implementation and archiving of very large sky surveys is playing an increasingly

important role in today’s astronomy research. These data archives are geographically distributed and

heterogeneous in nature. Existing techniques for knowledge extraction from this data require download-

ing the archives to a centralized site. However, merging of remote data at a central site to perform data

mining will result in unnecessary communication overhead.We believe, to fully exploit the potential

of this data, mechanisms ought to be provided for more communication efficient multiple archive data

analysis.

In this paper, we describe a system for Distributed Exploration of Massive Astronomical Catalogs

(DEMAC). The system is designed to be integrated on top of theexisting National Virtual Observatory

environment and provides tools for distributed data mining(as web services) without requiring datasets

to be fully down-loaded to a centralized server. To illustrate the potential effectiveness of our system,

we develop communication-efficient distributed algorithms for (1) Principal Component Analysis (PCA)

and (2) outlier detection. We perform case studies on real Astronomy data to evaluate the performance of

our algorithms on the fundamental plane of astronomical parameters. In particular, PCA enables dimen-

sionality reduction within a set of correlated physical parameters such as a reduction of a 3-dimensional

data distribution (in astronomer’s observed units) to a planar data distribution (in fundamental physical

units). Outlier detection enables identification of “interesting" galaxies that do not fall in this planar

distribution. Fundamental physical insights are thereby enabled through efficient access to distributed

multi-dimensional data sets.

Index Terms

Distributed Data Mining, Astronomy Catalogs, Cross Matching, Principal Component Analysis,

Outlier Detection.

I. INTRODUCTION

The design, implementation and archiving of very large sky surveys is playing an increasingly

important role in today’s astronomy research. Many projects (e.g.GALEX All-Sky Survey, WISE

All-Sky Survey and LSST Large Synoptic Survey) are producing enormous catalogs (tables) of

astronomical sources (tuples). These catalogs are geographically distributed. If science progressed

through these individual data archives alone, then there isno problem. However, some of the

greatest scientific discoveries have come at the intersection of different disciplines – in astronomy,

this means at the intersection of different wavelength domains. For example: the most luminous
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galaxies in the Universe (Ultra-Luminous and Hyper-Luminous IR Galaxies) were found through

the comparison of IR and optical data; Quasars and Powerful Radio Galaxies were found through

the combined analysis of radio and optical data. To make great progress in astronomy, it is

imperative to link these distributed data collections and to provide tools that enable analysis of

distributed data.

In this paper, we describe a system for the Distributed Exploration of Massive Astronom-

ical Catalogs (DEMAC). DEMAC offers a collection of data mining tools based on various

DDM algorithms. The system is built on top of the existing National Virtual Observatory [1]

environment and provides tools for data mining (as web services) without requiring datasets

to be down-loaded to a centralized server. The algorithms wedevelop sacrifice accuracy for

communication savings. They offer approximate results at aconsiderably lower communication

cost than that of exact results through centralization. As such, we see DEMAC as serving the

role of an exploratory “browser”. Users can quickly get (generally quite accurate) results for

their distributed queries at low communication cost. Armedwith these results, users can focus

in on a specific query or portion of the datasets, and down-load for more intricate analysis.

Since these attributes are now necessarily distributed across geographically dispersed data

archives, it is scientifically valuable to explore distributed Principal Component Analysis (PCA)

and outlier detection on larger astronomical data collections and for greater numbers of as-

trophysical parameters. The application of communication-efficient distributed PCA and outlier

detection along with other DDM algorithms will likely enable new scientific insights into our

Universe.

To illustrate the potential effectiveness of our system, wedevelop communication-efficient

distributed algorithms for PCA and outlier detection. We carry out case studies using distributed

PCA for detecting fundamental planes of astronomical parameters. Astronomers have previously

discovered cases where the observed parameters measured for a particular class of astronomical

objects (such as elliptical galaxies) are strongly correlated, as a result of universal astrophysical

processes (such as gravity). PCA will find such correlationsin the form of principal components.

Examination of a subset of the parameter space can also help astronomers identify objects

with atypical behavior ([2],[3]). It is therefore important to systematically explore the observable

parameter space, and specifically search for rare, unusual,or previously unknown types of astro-

nomical objects and phenomena. For example, examination ofthe three dimensional parameter
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space formed by the difference of petrosian flux in the R and I bands, the K-band mean surface

brightness and logarithm of the K-band concentration indexmay lead to identification of galaxies

that were previously not known to be “interesting". This motivates the need for designing outlier

detection algorithms.

The rest of the paper is organized as follows. Section II discusses related work on analysis

of large scientific data collections as well as DDM. Section III describes the architecture of

the DEMAC system. Section IV presents the data analysis problem addressed in this paper:

analyzing distributed astronomical virtual catalogs. Section V reviews PCA background material.

Sections VI and VII describe distributed algorithms for virtual catalog PCA and outlier detection,

respectively. Section VIII provides a two case studies to evaluate the effectiveness of our

distributed techniques: finding galactic fundamental planes and galactic outlier detection. Finally,

Section IX concludes the paper.

II. RELATED WORK

A. Analysis of Large Scientific Data Collections

There are several instances in the astronomy and space sciences research communities where

data mining is being applied to large data collections ([4],[5]). Some dedicated data mining

projects include F-MASS [6], Class-X [7], the Auton Astrostatistics Project [8], and additional

VO-related data mining activities (such as SDMIV [9]). In essentially none of these cases does

the project involve truly DDM [10], [11], [12].

One of the first large-scale attempts at grid data mining for astronomy is the U.S. National

Science Foundation (NSF) funded GRIST [13] project. The GRIST goals include application of

grid computing and web services (service-oriented architectures) to mining large distributed data

collections. GRIST is focused on one particular data modality: images. Hence, GRIST aims to

deliver mining on the pixel planes within multiple distributed astronomical image collections.

The project that we are proposing here is aimed at another data modality: catalogs (tables) of

astronomical source attributes. GRIST and other projects also strive for exact results, which usu-

ally requires data centralization and co-location, which further requires significant computational

and communications resources. DEMAC (our system) producesapproximate results without

requiring data centralization (low communication overhead). Users can quickly get (generally

quite accurate) results for their distributed queries at low communication cost. Armed with these
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results, users focus in on a specific query or portion of the datasets, and down-load for more

intricate analysis.

The U.S. National Virtual Observatory (NVO) [1] is a large scale effort funded by the NSF to

develop a information technology infrastructure enablingeasy and robust access to distributed

astronomical archives. It will provide services for users to search and gather data across multiple

archives and some basic statistical analysis and visualization functions. It will also provide a

framework for new services to be made available by outside parties. These services can provide,

among other things, specialized data analysis capabilities. As such, DEMAC fits nicely into the

NVO as a new service.

The International Virtual Observatory (IVO) [14] is another large scale effort to develop an

infrastructure enabling easy and robust access to distributed astronomical archives. Generally, the

Virtual Observatory can be seen as part of an ongoing trend toward the integration of information

sources. The main paradigm used today for the integration ofthese data systems is that of a

data grid [15], [16], [17], [18], [19], [20], [21], [22]. Among the desired functionalities of a

data grid, data analysis takes a central place. As such, there are several projects [23], [24], [25],

[13], [26], [27], which in the last few years attempt to create a data mining grid. In addition,

grid data mining has been the focus of several workshops [28], [29].

B. Distributed Data Mining

DDM is a relatively new technology that has been enjoying considerable interest in the recent

past [30], [11]. DDM algorithms strive to analyze the data ina distributed manner without down-

loading all of the data to a single site (which is usually necessary for a regular centralized data

mining system). DDM algorithm naturally fall into two categories according to whether the data

is distributed horizontally (with each site having some of the tuples) or vertically (with each site

having some of the attributes for all tuples). In the latter case, it is assumed that the sites have

an associated unique id1 used for matching. In other words, consider a tuplet and assume site

A has a part of this tuple,tA, andB has the remaining parttB. Then, the id associated withtA

equals the id associated withtB.2

1The unique id can be a primary key.

2Each id is unique to the site at which it resides; But, ids can match across sites; a tuple at siteA can have the same id as a

tuple at siteB.
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The NVO can be seen as a case of vertically partitioned data, assuming ids have been generated

by a cross-matching service. With this assumption, DDM algorithms for vertically partitioned

data can be applied. These include algorithms for PCA [31], [32], clustering [33], [31], Bayesian

network learning [34], [35], and supervised classification[36], [37], [38], [39], [40]. Kargupta and

Puttagunta [32] developed a randomized algorithm for distributed Principal Component Analysis

from vertically partitioned data. Our work in [41] is a slightly revised version of [32].

C. Outlier Detection

Due to the fact that the definition of an outlier is inherentlyimprecise, many approaches

have been developed for detecting outliers. We will not attempt a comprehensive citation listing,

instead, the reader is referred to Hodge and Austin [42] for an excellent survey mostly focusing

on outlier detection methodologies from machine learning,pattern recognition, and data mining.

Also, Barnett and Lewis [43] provide and excellent survey ofoutlier detection methodologies

from statistics. Note, some work has been done on parallel algorithms for outlier detection on

horizontallydistributed data (not in an astronomy context) [44]. However, to our knowledge, no

work has been done on outlier detection over vertically distributed data.

D. Our Prior Work

This paper extends our prior work in [41] and [45] in the following ways.

1) We have greatly extended the discussion of the system architecture and related work.

2) For distributed outlier detection algorithm, we have modified the algorithm to require only

one invocation to find the top k outliers rather than k separate invocations. Moreover, we

have extended the correctness proof to include all its details.

3) For the distributed outlier detection experiments, we have replaced the accuracy metric

with two more meaningful ones and have carried out more extensive experiments. More

comments on this are provided in Section VIII.

III. DEMAC - A SYSTEM FOR DISTRIBUTED EXPLORATION OF MASSIVE ASTRONOMICAL

CATALOGS

In order to meet the challenges of the multi-archive data analysis problem faced by the

astronomy community, the U.S. National Virtual Observatory(NVO) [1] and an International
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Downloaded

Table
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Downloaded

Table

User B
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NVO Xface
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Select Download

NVO
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Web Services

(a) Current data flow is restricted because of data ownershipand

bandwidth considerations.

Data Mining

Model

User A

Model

Data Mining

User B

Sky−Survey I

NVO Xface

Sky−Survey III

NVO Xface

Distributed Data Mining

Select Download

NVO

Cross−Match

Web Services

Data Mining

Distributed Data Mining

Sky−Survey II

NVO Xface

Distributed Data Mining

(b) Distributed data mining algorithms can process large

amounts of data using a small amount of communication. The

users get the data mining output rather than raw data.

Fig. 1. Proposed data flow for distributed data mining embedded in the NVO.

Virtual Observatory (IVO) [14] has been developed and deployed. However, processing, mining,

and analyzing these distributed and vast data collections are fundamentally challenging tasks

since most off-the-shelf data mining systems require the data to be down-loaded to a single

location before further analysis. This imposes serious scalability constraints on the data mining

system and fundamentally hinders the scientific discovery process. Figure 1 further illustrates

this technical problem. The left part depicts the current data flow in the NVO. Through web

services, data are selected and down-loaded from multiple sky-surveys.

Our system requires a conceptually simple modification – theaddition of a distributed data

mining functionality in the sky servers. This allows DDM to be carried out without having to

down-load large tables to the users’ desktop or some other remote machine. Instead, the users

will only down-load the output of the data mining process (a data mining model); the actual data

mining from multiple data servers is performed using communication-efficient DDM algorithms.

This section describes the high level design of the DEMAC system. DEMAC is designed as

an additional web-service which seamlessly integrates into the NVO. It consists of two basic

services. The main one is a web-service providing DDM capabilities for vertically distributed sky

surveys (WS-DDM). The second one, which is intensively used by WS-DDM, is a web-service

providing cross-matching capabilities for vertically distributed sky surveys (WS-CM).

To provide a distributed data mining service, DEMAC relies on other services of the NVO
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such as the ability to select and down-load from a sky survey using SQL. Key to our approach is

that these services be used not over the web, through the NVO,but rather by local agents which

are co-located with the respective sky survey. In this way, the DDM service avoid bandwidth

and storage bottlenecks, and overcomes restrictions whichare due to data ownership concerns.

Agents, in turn, take part in executing efficient distributed data mining algorithms, which are

highly communication-efficient. It is the outcome of the data mining algorithm, rather than the

selected data table, that is provided to the end-user. With the removal of the network bandwidth

bottleneck, the main factor limiting the scalability of thedistributed data mining service would

be database access. For database access we intend to rely on the SQL interface provided by the

different sky-surveys to the NVO.

We outline here the architecture for the two web-services inthe DEMAC system.

A. WS-DDM – DDM for Heterogeneously Distributed Sky-Surveys

This web-service allows running a DDM algorithm on a selection of sky-surveys. The user

uses existing NVO services to locate sky-surveys and define the portion of the sky to be data

mined. Then the WS-CM is used to select a cross-matching scheme for those sky-surveys. This

specifies how the tuples are matched across surveys to define the virtual table to be analyzed3.

Following these two preliminary phases the user submits thedata mining task.

Execution of the data mining task is scheduled according to resource availability. Specifically,

the size of the virtual table selected by the user dictates scheduling. Having allocated the required

resources, the data mining algorithm is run by agents which are co-located with the selected sky-

surveys. These agents access the sky-survey through the SQLinterface it exposes to the NVO

and communicate with each other directly, over the Internet. When the algorithm has terminated,

results are provided to the user using a web-interface.

B. WS-CM – Cross-Matching for Heterogeneously DistributedSky-Surveys

Before the application of any distributed data mining algorithm on the astronomy catalogs,

we must first consider the problem of cross-matching the catalogs. The process can be briefly

3The procedure for cross-matching is illustrated by an example in section III-B
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ID RA DEC A

P1 ra1 dec1 a1

P2 ra2 dec2 a2

P3 ra3 dec3 a3

ID RA DEC B

Q1 ra4 dec4 b1

Q2 ra2 dec2 b2

Q3 ra1 dec1 b4

TABLE I

CATALOGS P AND Q.

RA DEC A B

ra1 dec1 a1 b4

ra2 dec2 a2 b2

TABLE II

V IRTUAL CATALOG BETWEEN P AND Q.

illustrated as follows:

1) Consider the catalogs P and Q shown in Table I. Each record corresponds to a celestial

object and contains right ascension (RA) and declination (DEC) attributes indicating the

position of the object in the celestial sphere. The records in catalog P have a unique ID

(with respect toP ) and an additional attribute A. Likewise the records in Q have a unique

ID (with respect toQ) and an additional attribute B.

2) A record in P whose RA and DEC coordinates are very close4 to the RA and DEC

coordinates of a record in Q is deemed to refer to the same celestial object. Thus, we can

consider thevirtual table (virtual catalog) of matched records between the catalogs – see

Table II. The unique IDs are dropped since they play no role inthe virtual catalog.

Central to the DDM algorithms we develop is the assumption that the virtual catalog can

be treated as vertically partitioned (see Section II for thedefinition). This means that theith

records in each real catalog match and form theith record in the virtual catalog. To realize

4in this example, identical
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MATCH ID

P1

P2

ID RA DEC A

P1 ra1 dec1 a1

P2 ra2 dec2 a2

P3 ra3 dec3 a3

MATCH ID

Q3

Q2

ID RA DEC B

Q1 ra4 dec4 b1

Q2 ra2 dec2 b2

Q3 ra1 dec1 b4

TABLE III

CATALOGS P AND Q WITH MATCHING INDICES.

this assumption, each pair of catalogs must have co-locateda distinct pair of match indices.

Each index is a list of pointers; both indices have the same number of entries. Theith entry in

each catalogs’ index points to the actual matching tuples. For example, the matching indices for

catalogs P and Q above are depicted in Table III. Observe thatrecordsP1 and Q3 match and

form the first record in the virtual catalog. Thus,P has as its first matching index,P1, andQ

has as its firstQ3. Likewise recordsP2 andQ2 match and form the second record in the virtual

catalog. Thus,P has as its second matching index,P2, and Q has as its secondQ2. Finally,

since recordsP3 and Q1 do not match, they have no corresponding matching indices. Clearly,

algorithms assuming a vertically partitioned virtual table can be implemented on top of these

matching indices.

Creating these indices is not an easy job. Indeed, cross-matching sources is a complex problem

for which no single best solution exists. The WS-CM web-service is not intended to address

this problem. Instead it uses already existing solutions (e.g., the cross-matching service already

provided by the NVO), and is designed to allow other solutions to be plugged in easily. Moreover,

cross-matching the entirety of two large surveys is a very time-consuming job and requires

centralizing (at least) the RA, DEC coordinates of all tuples from both.

Importantly, the indices do not need to be created each time adata mining task is run. Instead,

provided the sky survey data are static (it generally is), each pair of indices only need be created

once. Then any data mining task can use them. In particular the DDMtasks we develop can use

them. The net result is the ability to mine virtual tables at low communication cost.
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IV. DATA ANALYSIS PROBLEM: ANALYZING DISTRIBUTED V IRTUAL CATALOGS

We illustrate the problem with two archives: the Sloan Digital Sky Survey (SDSS) [46] and

the 2-Micron All-Sky Survey (2MASS) [47].5 Each of these has a simplified catalog containing

records for a large number of astronomical point sources, upward of 100 million for SDSS

and 470 million for 2MASS. Each record contains sky coordinates (RA,DEC) identifying the

sources’ position in the celestial sphere as well as many other attributes (460+ for SDSS; 420+

for 2MASS). While each of these catalogs individually provides valuable data for scientific

exploration, together their value increases significantly. In particular, efficient analysis of the

virtual catalog formed by joining these catalogs would enhance their scientific value significantly.

DEMAC addresses the data analysis problem of developing communication-efficient algo-

rithms for analyzing user-defined subsets of virtual catalogs. The algorithms allow the user to

specify a regionR in the sky and a virtual catalog, then efficiently analyze thesubset of tuples

from that catalog with sky coordinates inR. Importantly, the algorithms we describe do not

require that the base catalogs first be centralized and the virtual catalog explicitly realized.

Moreover, the algorithms are not intended to be a substitutefor exact, centralization-based

methods currently being developed as part of the NVO [6], [7]. Rather, they are intended to

complement these methods by providing, quick, communication-efficient approximate results to

allow browsing. Such browsing will allow the user to better focus their exact, communication-

expensive, queries.

Sections VI and VII describe some DDM algorithms that are incorporated as part of the

WS-DDM web service for addressing the following problems: virtual catalog PCA and virtual

catalog outlier detection. Before doing so, some PCA background is reviewed.

V. PCA BACKGROUND

PCA is a well-established data analysis technique used in a large number of disciplines:

astronomy, computer science, biology, chemistry, climatology, geology,etc. For a more detailed

treatment of PCA, the reader is referred to [48].

5Our approach easily scales to more than two sky-surveys. However, we use this as an illustrative example for the rest of the

paper.
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A. PCA Theory

GivenX , anm-dimensional random vector, the goal of PCA is to find a linearmapping ofX
whose resultingm-dimensional random vector has uncorrelated components each with maximum

variance. As is standard practice, we assume thatX has mean vector zero. LetΣX denote the

covariance matrix ofX , λX
1 ≥ λX

2 ≥ . . . ≥ λX
m ≥ 0 denote its eigenvalues, andvX

1 , vX
2 , . . ., vX

m

denote their associated eigenvectors (pair-wise orthogonal and of length one). Thejth principal

direction of X is vX
j . The jth principal component(PC) ofX is denotedzXj and equalsX TvX

j .

It can be shown that the PCs are pair-wise uncorrelated (havezero covariance) and capture the

maximum possible variance in the following sense. For each1 ≤ j ≤ m, there does not exist

v ∈ R
m orthogonal tovX

ℓ for all 1 ≤ ℓ < j such that the variance ofX T v is greater than the

variance ofzXj = X T vX
j . It can further be shown that the variance ofzXj = X TvX

j equalsλX
j .

Consider the random vectorZX
≤r = (zX1 , . . . zXr )T . If r = m, thenZX

≤r is simply a different

way of representingX because,X = V X
≤r(ZX

≤r)
T where whereV X

≤r is the n × r matrix with

columnsvX
1 , . . ., vX

r . However, ifr < m, thenZX
≤r is a lossy lower dimensional representation

of X . The amount of loss is typically quantified as

100

[

∑r

j=1 λX
j

∑m

j=1 λX
j

]

, (1)

the “percentage of variance” captured by the lower dimensional representation. The larger the

percentage captured, the betterZX
≤r represents the “information” contained in the original vector

X . If r is chosen so that a large percentage of the variance is captured, then, intuitively,ZX
≤r,

captures many of the important features ofX . So, subsequent analysis onZX
≤r can be quite

fruitful at revealing structure not easily found by examination of X directly.

B. PCA in Practise

In practice,ΣX is typically not known is estimated from a dataset denoted asM , an n × m

matrix with real-valued entries. The rows ofM represent data records. LetM j denote thejth

column andM j(i) denote theith entry of this column. Letµ(M j) denote thesample meanof

this columni.e.

µ(M j) =

∑n

i=1 M j(i)

n
. (2)
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To accommodate the fact thatX is assumed to have zero mean, the dataset is standardized

so that each column ofM has zero sample mean. This is done by subtractingµ(M j) from

each entry inM j . From the standardized dataset, an estimateΣ is generated forΣX . Finally, the

eigenvalues and their associated eigenvectors (pair-wiseorthogonal and unit length) are generated

from Σ: λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 andv1, v2, . . ., vm. The jth principal component is denoted

zj and equalsMvj (the projection ofM along thevj direction).Z≤r, the n × r matrix with

columnsz1, . . . , zr, can be thought of as a lossy lower-dimensional representation of M . The

amount of loss is quantified as

100

[

∑r

j=1 λj
∑m

j=1 λj

]

, (3)

the “percentage of variance” captured by the leadingr PCs.

Outlier detection:Clearly the leading PCs carry valuable information. However, the lower PCs

do too. Some techniques for outlier detection have been developed based on the lower PCs [48],

[49], [50], [51], [52]. These techniques look to identify data records which deviate sharply from

the “correlation structure” of the data. Before discussingthe technical details, let us first describe

what is meant by a point deviating from the correlation structure by means of an example.

Example 1:Consider a dataset where each row consists of the height and weight of a group of

people (borrowed from [48] page 233). We expect that a strongpositive correlation will exist –

small (large) weights correspond to small (large) heights.A row with height 70 in. (175 cm) and

weight 55 lbs (25 kg) may not be abnormal when height or weightis taken separately. Indeed,

there may be many people in the group with height around 70 or weight around 55. However,

taken together, the row is very strange because it violates the usual dependence between height

and weight. �

In Example 1, the outlying record will not stand out if the projection of the data on each

variable is viewed. Only when the variables are viewed together, does the outlier appear. The same

idea generalizes to higher dimensional data. An outlier only stands out when all of the variables

are taken into account and does not stand out over a projection onto any proper subset. Automated

tests for detecting “correlation outliers” are quite valuable. The “low variance” property of the

last principal components makes them useful for this job.

Recall that thejth PC, zj = Mvj , has sample varianceλj i.e. the variance over the entries
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of zj is λj . Thus, if λj is very small and there were no outlier data records, one would expect

the entries ofzj to be nearly constant. In this case,vj expresses a nearly linear relationship

between the columns ofM . A data record which deviates sharply from the correlation structure

of the data will likely have itszj entry deviate sharply from the rest of the entries (assuming

no other outliers). Since the last components have the smallestλ′s, then an outlier’s entries in

these components will likely stand out. This motivates examination of the following statistic for

the ith data record (theith row in M):

d2
1,i = zm(i)2 (4)

wherezm(i) denotes theith entry of zm. A possible criticism of this approach is pointed out in

[48] page 237: “it [d2
1,i] still gives insufficient weight to the last few PCs, [...] Because the PCs

have decreasing variance with increasing index, the valuesof zj(i)
2 will typically become smaller

asj increases, andd2
1,i therefore implicitly gives the PCs decreasing weights asj increases. This

effect can be severe if some of the PCs have very small variances, and this is unsatisfactory as

it is precisely the low-variance PCs which may be most effective ...”

To address this criticism, the components are normalized togive equal weight. Letwj denote

the normalizedjth principal direction: them × 1 vector, v̂j , whose ith entry is vj(i)√
λj

. The

normalizedjth principal component iŝzj = Mwj . The sample variance of̂zj equals one, so,

the weights of the normalized components are equal. The statistic we use for theith data point

is (following notation in [48])

d2
2,i = ẑm(i)2. (5)

Data tuples with larged2
2,i values can be regarded as outliers.

VI. V IRTUAL CATALOG PCA

In this section we describe two distributed algorithms for approximating the PCs on a virtual

catalog,M . Both assume that the participating sites have the appropriate match indices. Hence,

we describe the algorithms under the assumption that the data in each site is perfectly aligned –

the ith tuple of each site match (sites have exactly the same number of tuples). For simplicity, we
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assumeM has been vertically distributed over two sitesSA andSB.6 SA has the firstp attributes

and SB has the lastq attributes (p + q = m). Let A denote then × p matrix representing the

dataset held bySA, and B denote then × q matrix representing the dataset held bySB. Let

[A : B] denote the concatenation of the datasetsi.e. M = [A : B]. Both perform the same basic

two steps.

1) A distributed computation is performed to produce a sample covariance matrix,Σ (an

estimate of the true covariance matrixΣX ). Upon completion,Σ is contained at each site.

2) Each site independently computes the eigenvalues and eigenvectors ofΣ.

The algorithms differ only differ in their computation ofΣ (first step).

A. Covariance Estimation Through Random Projection

This technique uses the straightforward standard formula for estimating covariance:Σ =

Cov(M) where the(j, k)th entry of Cov(M) is

∑n

i=1[µ(M j) − M j(i)][µ(Mk) − Mk(i)]

n − 1
. (6)

If M has been standardized (µ(M j) subtracted from each entry inM j), then

Σ =
[A : B]T [A : B]

n − 1
.

The only part of computingΣ (including standardization) requiring communication isAT B.

Hence, it suffices to estimateAT B in a communication-efficient manner. The key idea in doing

so is based on the following fact echoing the observation made in [53] (and elsewhere) that

high-dimensional random vectors are nearly orthogonal.

Fact 1: Let R be an ℓ × n matrix each of whose entries is drawn independently from a

distribution with variance one and mean zero. It follows that E[RT R] = ℓIn where In is the

n × n identity matrix.

Algorithm VI-A.1 is used for computingAT B. The result is obtained at both sites. In the

communication cost calculations, we assume a number (floating point or integer) requires 4 bytes

of storage.

6As stated earlier, this assumption can be easily relaxed.
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Algorithm VI-A.1 Random Projection Based Distributed Covariance Matrix Estimation
1. SA sendsSB a random number generator seed.[4 bytes]

2. SA andSB generate anℓ×n random matrixR. Each entry is generated independently and

identically from a distribution with mean zero and varianceone.

3. SA sendsRA to SB; SB sendsRB to SA. [4mℓ bytes]

4. SA andAB computeD = (RA)T (RB)
ℓ

.

Note that,

E[D] = E

[

AT (RT R)B

ℓ

]

=
AT E[RT R]B

ℓ
= AT B. (7)

The last equality is due to Fact 1. Hence, on expectation, thealgorithm is correct. Its commu-

nication cost (bytes) divided by the cost of the centralization technique,

4mℓ + 4

4nm
=

ℓ

n
+

1

nm
, (8)

is small if ℓ << n. Indeedℓ provides a "knob" for tuning the trade-off between communication-

efficiency and accuracy. Later, in our case study, we presentexperiments measuring this trade-off.

B. Covariance Estimation Through Uniform Sampling

This technique simply computesCov(.) over a standardized, uniform sample of rows from

M . To accomplish this, Algorithm VI-B.1 is used.

Its communication cost (bytes) divided by the cost of the centralization technique is

4pnm + 4

4nm
= p +

1

nm
. (9)

As before,p provides a "knob" for tuning the trade-off between communication-efficiency and

accuracy. Later, in our case study, we present experiments measuring this trade-off.

VII. V IRTUAL CATALOG OUTLIER DETECTION

Broadly speaking, outlier detection has two important roles: data cleaning and data mining.

Firstly, data cleaning is used during data preparation stages. For example, if a cross-matching
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Algorithm VI-B.1 Uniform Sampling Based Distributed Covariance Matrix Estimation
1. SA sendsSB a random number generator seed.[4 bytes]

2. SA and SB uniformly select a fractionp ∈ (0, 1] of their tuples denotedA′ and B′,

respectively. Note, theith tuple in A′ matches theith in B′, thus, [A′ : B′] is a uniform

sample of[A : B].

3. SA standardizesA′ by subtractingµ(Aj) from each entry inAj (1 ≤ j ≤ p). SB standardizes

B′ by subtractingµ(Bj) from each entry inBj (1 ≤ j ≤ q).

4. SA sendsA′ to SB; SB sendsB′ to SA. [4pmn bytes]

5. SA andSB computeCov([A′ : B′]).

technique wrongly joined a pair of tuples, then the matched tuple will likely have properties

making it stand out from the rest of the data. An outlier detection process might be able to identify

the matched tuple and allow human operators to check for an improper match. Secondly, outlier

detection can be used to identify legitimately matched tuples with unique properties. These may

represent exceptional and interesting astronomical objects. Again, a human operator is alerted

to further examine the situation.

In this section, we develop a distributed algorithm for outlier detection based on the PCA metric

described earlier for scoring data records. Specifically, the outlier detection problem addressed

is as follows. Givenk (a user-specified parameter) andM a dataset vertically distributed over

sitesSA andSB, find the topk data records inM with respect tod2
2,. (ties broken arbitrarily).7

The algorithm we develop employs two basic steps.

1) An algorithm from Section VI is applied to approximate thelast normalized principal

direction, v̂m. At the end, each site has this approximation, denoted asṽm.

2) Let z̃m denoteMṽm and d̃2
2,i denotez̃m(i)2. A distributed computation is carried out to

compute the topk data records with respect tõd2
2,..

The chief difficulty to overcome in developing a distributedalgorithm for the second step is

the fact thatd̃2
2,i cannot be directly computed. Even though both sites haveṽm from the first

step,d̃2
2,i requires information from both sites to compute. To make this point clear, letṽm(A)

and ṽm(B) denote thep × 1 andq × 1 vectors consisting of the firstp entries ofṽm and lastq

7As mentioned earlier, this two site assumption can be easilyrelaxed, but is employed for simplicity of exposition.
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entries ofṽm, respectively. These are the parts ofṽm corresponding to the attributes atSA and

SB, respectively. Sincẽzm = Mṽm = [A : B]ṽm, we have

z̃m = Aṽm(A) + Bṽm(B). (10)

Let z̃A
m denote the first vector(n × 1) in the above sum. It can be computed entirely atSA.

Let z̃B
m denote the second vector(n × 1) in the above sum. It can be computed entirely atSB.

Letting z̃A
m(i) and z̃B

m denote theith entries, we have

d̃2
2,i = (z̃A

m(i) + z̃B
m(i))2. (11)

Hence, the second step above requires a distributed algorithm for computing the topk among

(z̃A
m(1) + z̃B

m(1))2, . . ., (z̃A
m(n) + z̃B

m(n))2. It suffices to solve the following problem.

Problem 1 (Distributed Sum-Square Top k (DSSTK)):SiteSA hasa1, . . . , an ∈ R andSB has

b1, . . . , bn ∈ R. Both sites have integern > k > 0. The sites must compute the topk among

c1 = (a1 + b1)
2, . . ., cn = (an + bn)2.

A communication-efficient algorithm for solving this problem is developed next. Unlike the

algorithm for distributed PCA, this one is not approximate –its output is the correct topk. The

algorithm assumes that ties are broken by choosing the larger index.8

A. An Algorithm for the DSSTK Problem

Developing a communication-efficient distributed algorithm which directly solves the DSSTK

problem is challenging. Instead we show how solving DSSTK can be reduced to solving a

simpler problem: compute the topk among(a1 + b1), . . ., (an + bn) (the Distributed Sum Top

k (DSTK)Problem). Then we develop a communication-efficient algorithm for DSTK.

Let icp denote the index of thepth largest value among(a1 +b1)
2, . . ., (an +bn)2. Let i+p denote

the index of thepth largest value among(a1 + b1), . . ., (an + bn). Let i−p denote the index of the

pth largest value among−(a1 + b1), . . ., −(an + bn). We have,

ic1 =







i+1 if (ai+1
+ bi+1

)2 ≥ (ai−1
+ bi−1

)2;

i−1 otherwise.
(12)

8The choice of tie-breaking mechanism is immaterial for the algorithm. Any linear ordering will do.
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Indeed, by definition,(aic1
+ bic1

)2 ≥ (aj + bj)
2 for any 1 ≤ j ≤ n. Thus, if (aic1

+ bic1
) ≥ 0,

then (aic1
+ bic1

) ≥ (aj + bj) for any 1 ≤ j ≤ n. Otherwise,−(aic1
+ bic1

) ≥ −(aj + bj) for any

1 ≤ j ≤ n. Hence,ic1 equalsi+1 or i−1 . Equation (12) follows. Furthermore, by throwing away

the (ic1)
th values from each of the three lists and applying Equation (12), the analogous result

holds for ic2. Repeating this process yields the following key result:

for any 1 ≤ p ≤ n, icp =







i+p if (ai+p
+ bi+p

)2 ≥ (ai−p
+ bi−p

)2;

i−p otherwise.
(13)

Equation (13) implies that the DSSTK Problem is solved by carrying out the following two basic

steps.

1) A distributed computation is employed, at the end of which, each site has〈(ai+p
+bi+p

), i+p 〉 :

1 ≤ p ≤ k and 〈(ai−p
+ bi−p

), i−p 〉 : 1 ≤ p ≤ k.

2) Each site, for1 ≤ p ≤ k, computesicp according to Equation (13) and outputs〈(aicp
+

bicp
)2, icp〉 : 1 ≤ p ≤ k.

The second step requires no communication, so all that remains is to develop a distributed

algorithm for the DSTK problem.9

The DSTK algorithm proceeds in rounds and its basic workingsare fairly simple. (i) At the

beginning of each round, each site computes its topk data values and sends their associated

indices to the other site. (ii) Each site checks whether the indices it received are the exactly

same (respecting ordering) as the ones it sent. If so, both sites terminate. Otherwise, (iii) both

sites exchange data values for the indices received. Finally, (iv) both sites, for each data value

sent or received in the previous step (say with indexℓ), update theirℓth data value toaℓ+bℓ

2
. The

sites proceed on to the next round.

The above scheme will work, but may send redundant messages.Once a data value has been

updated in step (iv), its value will be identical at both sites and will never change again (even

if another update is applied). Hence, these values need not be sent in future invocations of step

(iii). To achieve this, both sites keep a copy ofU , a list of indices of data values that have

been updated. Indices that appear inU need not have their data values sent during step (iii).

9This algorithm can then be applied again withSA having−a1, . . . ,−an andSB having−b1, . . ., −bn to compute〈(a
i
−

p
+

b
i
−

p
), i−p 〉 : 1 ≤ p ≤ k.
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(However, the same argument does not carry over to sending indices in (i), there it is essential

that repeated index transmission be allowed.)

The DSTK algorithm pseudo-code can be seen in Algorithm VII-A.1. Its not difficult to show

that, due to symmetry, the copies ofU held at each site will always be identical.

Algorithm VII-A.1 DSTK Algorithm
0. SA sets its copy ofU to ∅ andSB sets its copy ofU to ∅.

1. SA selects thek largest amonga1, . . ., an. Let their indices be denotediAj , 1 ≤ j ≤ k.

SA sends〈iAj : 1 ≤ j ≤ k〉. In parallel,SB selects thek largest amongb1, . . ., bn and sends

〈iBj : 1 ≤ j ≤ k〉. [8k bytes]

2. Both sites check whetheriAj = iBj for all 1 ≤ j ≤ k. If so,

2a. for eachiAj /∈ U , the sites exchange their(iAj )th data value[≤ 8k bytes]

2b. each site outputs〈(aiA1
+ biA1

), iA1 〉, . . ., 〈(aiA
k

+ biA
k
), iAk 〉 and terminates.

3. Otherwise, the following actions are taken.SA sends〈aiAj
: 1 ≤ j ≤ k, iAj /∈ U〉 and

〈aiBj
: 1 ≤ j ≤ k, iBj /∈ U〉. In parallel,SB sends〈biBj

: 1 ≤ j ≤ k, iBj /∈ U〉 and 〈biAj
: 1 ≤ j ≤

k, iAj /∈ U〉. [≤ 16k bytes]

4. Both sites, for eachiAj , iBj /∈ U : update their(iAj )th and (iBj )th data values to
a

iA
j

+b
iA
j

2
and

a
iB
j

+b
iB
j

2
, addℓ to their copy ofU , and goto step 1.

We illustrate the DSTK algorithm with the following example:

Example 2:AssumeSA andSB have data values as depicted in Table IV. Letk = 2 i.e. we

are interested in finding the indices of the top two among the third row.

• (Round 1:)SA sends indices〈101, 100〉; SB sends indices〈1, 2〉. Since these indices do not

match,SA replies with data values〈200, 199〉 and 〈100, 101〉; SB replies with data values

〈300, 298〉 and〈203, 202〉 (note that, due to ordering, the sites can match up the data values

received with their correct index). Both sites update their1st, 2nd, 100th, and 101st data

values resulting in Table V. Both sites add1, 2, 100, 101 to their copy ofU .

• (Round 2:)SA sends indices〈101, 100〉; SB sends indices〈101, 100〉. Since there are no

mismatches (i.e. the first sent each site match as do the seconds), then both sites terminate

each outputting data value/index pairs〈403, 101〉 and〈401, 100〉 as the final (correct) answer.

Note that the total communication cost divided by the cost ofthe centralization technique is64
408

.
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1 2 3 · · · 99 100 101

SA 100 101 102 · · · 198 199 200

SB 300 298 296 · · · 104 202 203

SA + SB 400 399 398 · · · 302 401 403
TABLE IV

ORIGINAL DATA VALUES

1 2 3 · · · 99 100 101

SA 200 199.5 102 · · · 198 200.5 201.5

SB 200 199.5 296 · · · 104 200.5 201.5

SA + SB 400 399 398 · · · 302 401 403
TABLE V

DATA VALUES AT THE END OF ROUND 1.

A substantial communications savings has been gained.

�

Correctness Proof:Now we prove that the DSTK algorithm is correct. First we showthat it

always terminates. Suppose the algorithm is at the start of the (n +1)st round. During step 1 of

each of the previous rounds, at least one index selectedSA or SB will not be in U ; otherwise,

SA andB would have selected exactly the same indices and terminated.10 Therefore at least one

index was added toU in each of the previousn rounds. Since indices are never removed from

U once added, then at the start of the(n + 1)st round,U will contain the indices for all data

values. Thus, during step 1,SA andB will select exactly the same indices and terminate.

Now we show that the indices outputted upon termination (i∗j , 1 ≤ j ≤ k) are correct,i.e. i∗j

is the index of thejth largest among(a1 + b1), . . ., (an + bn). Let â1, . . ., ân and b̂1, . . ., b̂n

denote the data values held bySA andSB at the start of the termination round. These may not

be the same as the original data values because some may have been updated during a previous

round. However, it can easily be shown that for each1 ≤ ℓ ≤ n, one of the following two

statements holds: (i)̂aℓ equalsaℓ and b̂ℓ equalsbℓ; or (ii) âℓ and b̂ℓ equal aℓ+bℓ

2
. Thus(âℓ + b̂ℓ)

= (aℓ + bℓ). Therefore, it suffices to show that(âi∗j
+ b̂i∗j

) is thejth largest among(â1 + b̂1), . . .,

(ân + b̂n). But this is obvious since, by definition,âi∗j
and b̂i∗j

are thejth largest amonĝa1, . . .,

10Because the data values with indices inU are the same across sites,i.e. for any ℓ ∈ U , the ℓth data value for bothSA and

SB is aℓ+bℓ

2
.
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ân and b̂1, . . ., b̂n, respectively.

Communication Complexity:Since our algorithm for the DSSTK problem requires two appli-

cations of the DSTK algorithm, its total number of bytes communicated is at most16k + 48kρ,

whereρ is the larger number of iterations carried out between the two applications. Dividing

this by the cost of the centralization technique, we get

16k + 48kρ

4n
=

4k

n
+ ρ

12k

n
(14)

Thus if ρ << n
12k

− 1
3
, then a large communication savings is gained.

Synchronization Cost:Each iteration of the DSTK algorithm requires two synchronizations

between sites. The two applications of DSTK can be combined such that an iteration from each

is carried out using the same two synchronizations (communication cost is unaffected). Hence

the total number of synchronizations carried out in solvingDSSTK isρ.

In some circumstances, reducingρ is worthwhile, even at the expense of greater overall

communication. A simple strategy for achieving this is to have each site in step 1 of DSTK

send its top⌈αk⌉ indices (α > 1). Then, in steps 3 and 4, the sites will exchange their data

values and update all⌈αk⌉ indices. However, step 2, remains unchanged, only the topk indices

are compared (otherwise the algorithm will unnecessarily solve the top⌈αk⌉ problem). The

communication cost per round (ignoring the termination round) increases by a factor of24⌈αk⌉
24k

≈ α. But, the extra information exchanged should reduce the total number of rounds executed.

We would expect, in many cases, the reduction factor to be proportional to ⌈αk⌉
k

≈ α.

VIII. C ASE STUDIES: FINDING GALACTIC FUNDAMENTAL PLANES AND OUTLIERS

The identification of correlations among astrophysical properties has lead to important dis-

coveries in astronomy. For example, the class of ellipticaland spiral galaxies have been found

to occupy a two dimensional space inside a three dimensionalspace of observed parameters

(radius, mean surface brightness and velocity dispersion)called theFundamental Plane([54],

[55]). This motivates research for finding similar correlations among other attributes in hetero-

geneously distributed sky surveys. Also, examination of a subset of the parameter space can also

help astronomers identify objects with atypical behavior ([2],[3]). It is therefore important to

systematically explore the observable parameter space, and specifically search for rare, unusual,

or previously unknown types of astronomical objects and phenomena.
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We perform two case studies using a virtual catalogs formed by cross-matching data from

the Sloan Digital Sky Survey (SDSS) [46] and the Two Micron All Sky Survey (2MASS)[47].

This dataset is described in Section VIII-A. The first case study evaluates our distributed PCA

algorithms for identifying fundamental galactic planes. It is described in Section VIII-B. The

second case study evaluates our distributed outlier detection algorithm for finding outlying

galaxies with respect to the “correlation structure” amongthe attributes in the virtual catalog. It

is described in Section VIII-C.

A. Dataset

We perform experiments on a 13022 record real dataset: theFundamental Plane Dataset. It

serves as a virtual catalog on which we employ our distributed algorithms. However, for the

purposes of our study, a real distributed environment is notnecessary. Thus, for simplicity, we

used a single machine and a simulated distributed environment.

Fundamental Plane Dataset: Using the web interfaces of 2MASS11 and SDSS12, and the

SDSS object cross id tool, we obtained an aggregate dataset involving attributes from 2MASS

and SDSS lying in the sky region between right ascension (RA)150 and 200, declination (DEC)

0 and 15. The aggregated dataset had the following attributes from SDSS: Petrosian I band

angular effective radius (Iaer), redshift (rs), and velocity dispersion (vd);13 and had the following

attribute from 2MASS: K band mean surface brightness (Kmsb).14 The dataset had a 13022 tuples

with four attributes. We produced a new attribute, logarithm Petrosian I band effective radius

(log(Ier)), as log(Iaer*rs) and a new attribute, logarithm velocity dispersion (log(vd)), by applying

the logarithm to vd. We dropped all attributes except those to obtain the three attribute dataset,

log(Ier), log(vd), Kmsb.

11http://irsa.ipac.caltech.edu/applications/Gator/

12http://cas.sdss.org/astro/en/tools/crossid/upload.asp

13petroRad_i (galaxy view), z (SpecObj view) and velDisp (SpecObj view) in SDSS DR4

14k_mnsurfb_eff in the extended source catalog in the All Sky Data Release,

http://www.ipac.caltech.edu/2mass/releases/allsky/index.html
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B. Case Study: Finding Galactic Fundamental Planes

This case study aims to identify to what extent the galaxies represented in the two datasets

can be thought to reside on a fundamental plane. This amountsto determining the percentage

of variance captured by the first two principal components. Both of distributed PCA algorithms

have a parameter allowing us to specify exactly how much communication they require. For each

value of this parameter on each dataset, we employ each algorithm 100 times computing the

percentage of variance captured by the first two PCs. We report averages and 0.95 confidence

intervals (error bars).

We compare the distributed algorithms against the centralization technique which simply sends

all the data to a single location and performs PCA there. In our experiments, we measure the

accuracy of the distributed algorithms as a function of the amount of communication they require.

Communication required is measured as a percentage:

Communication Percentage= 100
Bytes required by distributed algo

Bytes required by centralization technique
.

The communication percentage of the random projection based distributed PCA algorithm (Rand-

Proj) is 100 times Equation (8). The communication percentage ofthe uniform sampling dis-

tributed PCA algorithm (UnifSamp) is 100 times Equation (9).

Figure 2 shows the communication costs versus accuracy of RandProj and UnifSamp on

the fundamental plane dataset. As can be seen, UnifSamp clearly outperforms RandProj. At

low communication percentages, UnifSamp produces resultsvery close to the centralized. Take

note that RandProj does approach the centralized results given large enough communication. It

is surprising that it initially moves away from the centralized results. We cannot explain this

observation.

Based on these results, it would seem that using UnifSamp to estimate the covariance matrix

for outlier detection would be better than RandProj. However, since outlier detection is based on

the PCs and not the variances captured, it is not entirely clear which covariance matrix estimation

is preferred. In the next subsection we directly examine this issue.

C. Case Study: Finding PCA Based Outlying Galaxies

This case study aims to identify the topk outlying galaxies with respect to the PCA-based

outlier score,d2
2,., described earlier. The centralized technique first computes the third principal
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Fig. 2. Communication percentage vs. the percentage of variance captured by the first two PCs on the fundamental plane

dataset. “Centralized” refers to the percentage of variance captured by the first two PCs using the centralized technique.

direction (both our datasets have three attributes). Then,computesd2
2,. for each data record and

returns the topk along with their score. On each dataset, we compare the outliers reported with

those reported by our distributed outlier detection technique using UnifSamp in the PCA phase.

As before, for each parameter setting, we repeat the outlierdetection algorithm 100 times. There

are two questions to address before describing our results:How do we measure communication

percentage? How do we measure accuracy?

Measuring communication percentage and accuracy:The communication cost of the dis-

tributed outlier detection algorithm is the cost of the uniform sampling PCA phase plus the cost

of the DSSTK phase. Thus, the communication percentage is (assuming a virtual catalog with

n records andm attributes)

100

[

(4pnm + 4) + (16k + 48kρ)

4mn

]

= 100

[

p +
1

nm
+

4k

mn
+

12kρ

mn

]

. (15)
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Accuracy is more difficult to measure. Lets1, . . . sn be true outlier scores of the records,

i.e. the scores computed by the centralized technique, written in descending order. Let̂s1, . . .,

ŝn denote their corresponding scores if estimated using the uniform sampling based distributed

PCA algorithm. Let̂ip be the index of thepth largest amonĝs1, . . ., ŝn. Ultimately, we would

like to quantify the extent to which the records,rî1
, . . ., rîk

, form a good approximation to the

true topk records,r1, . . ., rk.

Faganet al. [56] discuss the problem of defining measures for comparing two top k lists.

One of the measures they consider is a generalization of Kendall’s tau from statistics. Adopting

notation similar to theirs, letD denote the set of true topk records{r1, . . ., rk}; let D̂ denote

the set of estimated topk records{rî1
, . . ., rîk

}; let z denote|D ∩ D̂|; and letP denote the set

of all size two subsets of(D ∪ D̂). For each pair{ri, rj} in P, let K(i, j) denote the “penalty”

assigned to this pair. If the true and estimated topk lists are inconsistent with respect to this

pair, then the penalty is set to one, otherwise zero. Three situations are deemed to cause an

inconsistency.

1) ri and rj appear in both topk lists. Moreover, the records appear in different orders in

the two lists.ri comes beforerj in true topk list but comes after in the estimated topk

list; or, ri comes afterrj in true topk list but comes before in the estimated topk list.

2) ri and rj both appear in one of the topk lists and exactly one of the records (sayri)

appears in the other list. Moreover,ri comes afterrj in the list in which they both appear.

3) ri andrj each appear in exactly one of the lists and both do not appear in the same list.

The final, unnormalized measure is defined to be the sum of the penalties15

∑

{ri,rj}∈P

K(i, j).

Following from Lemma 3.1 in [56], this sum is tightly boundedfrom above by(k− z)(k + z)+

z(z−1)
2

. Hence, the final, normalized measure is16

15DenotedK(0)(τ1, τ2) in [56].

16In our prior work [45] we used a similar, but more ad-hoc, measure because we were unaware of [56]. However, we drop

that measure here in favor of Krus.
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Krus =

∑

{ri,rj}∈P
K(i, j)

(k − z)(k + z) + z(z−1)
2

. (16)

We use this as one measure of accuracy in our experiments. However, we feel the measure

has weaknesses related to the fact that it does not take into account the actual outlier scores,

only the topk records themselves. Hence there are situations where Krus gives value very close

to one (indicating poor estimation), but a plausible argument can be made that the estimation is

actually decent.

Example 3:Supposes1 − s2k ≤ ǫ and the estimated topk records arerk+1, . . ., r2k, i.e.

î1 = k + 1, . . ., îk = 2k. In this case, Krus returns oneregardlessof the value ofǫ. However,

whenǫ is very close to zero, it seems intuitive that anyk records out ofr1, . . ., r2k are a decent

top k since they all have nearly the same outlier score. �

We would like to use an accuracy measure that takes into account the actual outlier scores.

However, to our knowledge, no such measure for comparing topk lists has been developed in

the literature. Therefore, we develop one of our own. Since we are assuming a true topk, we

consider only recordsrj (1 ≤ j ≤ k) and develop a penalty for its estimaterîj
. We choose not

to assign a penalty to all pairs as Faganet al. do, because they were interested in comparing to

top k lists without assuming one was the true answer.

We also do not consider the order in which the true topk appear,i.e., if r1, . . . rk andrî1
, . . . , rîk

differ only in the order in which the records appear, then we assume no error has occurred.17

With this in mind, the penalty for estimatingrj as rîj
, denotedRj, is zero if rîj

is among the

true topk, i.e., sîj
≥ sk. Otherwise, the penalty is amount by which the outlier scoreof rîj

would need be increased to be in the true topk, i.e., sk − sîj
. Formally stated, the penalty is

defined as

Rj =







0 if sîj
≥ sk;

sk − sîj
otherwise.

(17)

An overall, unnormalized accuracy metric, is

k
∑

j=1

Rj . (18)

17We make this assumption to simplify normalization.
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Observe that, forǫ very close to zero in Example 3, (18) is very close to zero, matching

our intuition. Finally, to improve interpret-ability, we normalize (18). Under the assumption

that sk > sn−k+1 (which holds in all experiments we run), (18) is bounded tightly above by
∑k

j=1(sk − sn−j+1). Hence, the normalized accuracy measure we use, and refer toas Outlier

Score Error (OSE), is

OSE =

∑k

j=1 Rj
∑k

j=1(sk − sn−j+1)
. (19)

In our experiments we used both accuracy measures Krus and OSE.

Experimental results:Figure 3 shows the results using the both accuracy measures and K =

5, 10, 50.

UnifSamp clearly outperforms RandProj with respect to bothaccuracy measures and all values

of K. Moreover, RandProj appears to level-off at a non-zero (in most cases, significantly large)

degree of error. This observation is consistent with the results in the previous case study. Beyond

this however, we cannot explain this surprising observation.

UnifSamp will result in zero error once 100 percent communication is reached since the

sampling is done without replacement. The rate of convergence is much faster with respect

to the OSE measure. We believe this is due to Krus presenting an overly pessimistic view

by not taking into account the actual outlier scores (only the top k records themselves). As

such, there are situations where Krus gives value very closeto one (indicating poor estimation),

but a plausible argument can be made that the estimation is actually decent (see Example 3).

OSE, on the other hand, takes into account the actual outlierscores, and it shows that, at low

communication percentages, UnifSamp produces results very close to the centralized.

IX. CONCLUSIONS

The challenges of scientific data analysis within the astronomy community are growing ever

more difficult. This is primarily a result of rapidly growingdata volumes from a growing

number of specialty missions (e.g., wavelength-specific space observatories in Astronomy; or

helio/geolocation-specific plasma sensing instruments for Space Physics; or domain-specific

remote sensing instruments for Earth System Science). Dataanalysis for these multiple missions

is growing in complexity and difficulty for several reasons:(a) the data are often distributed
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Fig. 3. Communication percentage vs. Krus accuracy: Krus measure (left column), OSE measure (right column). The rows

from top to bottom depict results withK = 5, 10, 50.

across different science data centers (e.g., the distributed Science Archive Research Centers,

SARCs, for Astronomy); (b) science instruments, their data-gathering modes, and their data

products are becoming increasingly complex; and (c) the data volumes are growing rapidly.

Hence, the greatest challenge to reaping the maximum scientific benefit from this wealth of data

is to developdistributeddata mining algorithms.

In this paper, we described a system for the Distributed Exploration of Massive Astronomical

Catalogs (DEMAC). It is built on top of the existing U.S. National Virtual Observatory envi-

ronment and provides tools for data mining (as web services)without requiring datasets to be

down-loaded to a centralized server. In order to test the functionality of the system, we developed
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algorithms for distributed PCA. Using the approximate PCs,we designed a communication-

efficient distributed algorithm for outlier detection. We carried out two case studies for estimating

principal components and outliers in the Fundamental Planeof astronomical parameters. We

envision DEMAC to increase the ease with which large, geographically distributed astronomy

catalogs are explored and astronomers can better tap the riches of distributed virtual sky survey

catalogs.
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Abstract

Advances in computing and communication has resulted
in very large scale distributed environments in recent years.
They are capable of storing large volumes of data and often
have multiple compute nodes. However, the inherent het-
erogeneity of data components, the dynamic nature of dis-
tributed systems, the need for information synchronization
and data fusion over a network and security and access con-
trol issues makes the problem of resource management and
monitoring a tremendous challenge. In particular, central-
ized algorithms for management of resources and data may
not be sufficient to manage complex distributed systems. In
this paper, we present a distributed algorithm for resource
and data management which builds on the traditional sim-
plex algorithm used for solving linear optimization prob-
lems. Our distributed algorithm is an exact one meaning its
results are identical if run in a centralized setting. We pro-
vide extensive analytical results and experiments on simu-
lated data to demonstrate the performance of our algorithm.

1. Introduction

Linear programs with constraints have been used exten-
sively in data mining applications. For example, in Support
Vector Machines (SVMs) with expert knowledge [24] a lin-
ear program is formulated such that the constraints corre-
spond to prior knowledge. Such systems are calledknowl-
edge based linear programsand can often end up with an
infinite number of constraints, resulting in a semi-infinite
linear program [23]. However, Mangasarianet al. estab-
lished that the these semi-infinite linear programs and lin-
ear programs with equilibrium constraints can be solved as
single linear programswith a finite number of constraints,
thus leading to a simple linear programming formulation.
Although, this is a relatively new area of research, several
other real world applications can be modeled as knowledge
based linear or convex programs.

Consider for example, a real time command and con-
trol system such as the Ballistic Missile Defense System

(BMDS) designed by the Missle Defense Agency1. Such
a system is fundamentally distributed, near real time and
should have the capability to manage, correlate and assess
information obtained from advanced sensors, lasers, com-
mand and control devices and battle management and plan-
ning. Such decentralized applications are faced with the
critical and challenging problem of resource and data man-
agement. This problem can be posed as a linear optimiza-
tion problem [1]. In such distributed applications, it is pos-
sible to either transfer data to a central site and then do the
mining or to build local distributed models. A decision must
be made regarding the optimal mechanism of data transfer
in the network such that the best balance between commu-
nication cost and accuracy is attained. However, finding a
centralizedsite willing to solve this optimization problem
may be difficult due to security and access control issues in
the network. For instance, in the BMDS system, modular
designs of monitoring the architecture are encouraged since
security of individual components is as critical as the state
of these components collectively across the BMDS. In this
paper, we present a distributed strategy for solving the lin-
ear optimization problem which is very useful for resource
management in DDM applications.

This paper is organized as follows: Section 2 describes
related work; Section 3 reviews a popular methodology for
solving linear programs namely the Simplex Algorithm;
Section 4 outlines the model of the distributed data min-
ing environment we are considering; Section 5 describes
the Distributed Simplex Algorithm and Section 6 presents
empirical results on simulated data. Finally, Section 7 con-
cludes the paper and discusses future work in the area.

2 Related Work

This section presents a brief overview of resource dis-
covery in distributed environments and some well known
optimization techniques.

1http://www.mda.mil/mdalink/html/mdalink.html



2.1 Resource Discovery in distributed en-
vironments

In recent years, a lot of research has been done on re-
source discovery in distributed environments. Iamnitchi et.
al [9] state that the two resource sharing environments that
are of particular interest to user communities are grids and
peer-to-peer (P2P) systems. They refer to the four main
components of a resource discovery solution as membership
protocol, overlay construction function, preprocessing and
local or remote request processing. Matchmaking [10] and
distributed cycle sharing [11] are two other distributed re-
source management mechanisms. Our work differs from all
the above in that our objective is to design a distributed op-
timization technique for efficient management of data trans-
fers.

2.2 Optimization Techniques

One of the most popular algorithms for linear program-
ming is the simplex algorithm [2]. We discuss Dantzig’s al-
gorithm in detail in section 3. However, this is not the only
way to solve a linear program. The main competitors are
a group of methods known as interior point methods ([12]
and the references therein). These algorithms have been in-
spired by Karmarkar’s algorithm [13]. As opposed to the
simplex method, interior point methods reach the optimal
vertex by traversing the interior of the feasible region. Some
interior point methods have polynomial worst case running
times, which are less than the exponential worst case run-
ning time of the simplex method. On average, however, the
simplex method is competitive with these methods.

Several other parallel implementations of the linear op-
timization algorithms exist [14, 15, 16, 17]. Stunkel and
Reed [16] consider two different approaches of paralleliza-
tion of the constraint matrices on the hypercube: (1) Col-
umn partitioned simplex and (2) Row partitioned simplex.
Column partitioned simplex have been studied further in
work done by Yarmish [14]. Their parallel algorithm di-
vides the columns of the constraint matrix among many
processors. Ho and Sundaraj [17] compare the problem
of distributed computation of the simplex method using
two different methods: (1) Distributed Reinversion (DINV)
and (2) Distributing Pricing (DPRI). Eckstein et. al. [19]
present parallel implementations of the simplex algorithm
using computational devices called “stripe arrays” which re-
semble temporary data structures used in some routines of
Connection Machine Scientific Software Library, CMSSL.

In the following section we present a review of the Sim-
plex Algorithm.

3 A Review of the Simplex Algorithm

Mathematically, the linear optimization problem [2] can
be stated as follows (using vector notation):

Find x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0 and the minimum
value (z) of the objective function:

c1x1 + c2x2 + · · · + cnxn (1)

satisfying the constraints:

A1x1 + A2x2 + · · · + Anxn = B (2)

whereAj =











a1j

a2j

...
amj











andB =











b1

b2

...
bm











.

For the maximization problem, the negative of the objec-
tive function can be minimized. Them×n linear system de-
fines the constraints on the objective function i.e. each row
of the matrix A defines a constraint on n variables. More-
over, the constraints and objective function can be repre-
sented by a“simplex tableau” (terminology adapted from
the optimization literature). The Table 1 gives an illustra-
tion.

a11 a12 · · · a1n b1

a21 a22 · · · a2n b1

· · · · · · · · · · · · · · ·
am1 am2 · · · amn bm

c1 c2 · · · cn z

Table 1. Simplex Tableau

A Basic Solutionto the linear optimization problem is
obtained by settingn− m variables equal to zero and solv-
ing the resultingm × m linear system of equations. In a
basic solution, the n - m variables at zero are callednon-
basicvariables, while the remaining m variables are called
basic variables. If all of the basic variables take non nega-
tive values, then the basic solution is called aBasic Feasible
Solution(BFS).

A fundamental theorem in linear programming concerns
the replacement of a linear system, if possible, by the equiv-
alentcanonicalsystem. This allows one to identify BFS’s,
and to move from one BFS’s to another easily through a
“pivot operation”. Quoting [2]: “Acanonicalsystem with
an ordered subset of variables, calledbasicis a system such
that for each i, theith basic variable has a unit coefficient
in theith equation and has zero coefficients elsewhere.” To
identify the BFS from a canonical form, all of the non-basic
variables are set to zero and values for the basic variables
are simply read-off. The simplex algorithm decreases the



value of the objective function at each iteration by selecting
a basic variable and replacing the corresponding of column
of matrix A with another column.

In most practical linear programming problems, the
equationAx = b takes the form of an inequality. In order to
transform these inequalities into equations, additional vari-
ables are introduced as follows: (1) If

∑n

j=1
aijxj ≤ bi

a slack variable is introduced:
∑n

j=1
aijxj + si = bi.

(2) If
∑n

j=1
aijxj ≥ bi a surplus variable and anarti-

ficial variable are added:
∑n

j=1
aijxj − si + ri = bi.

(3) If
∑n

j=1
aijxj = bi an artificial variable is added:

∑n

j=1
aijxj + ri = bi. It must be noted that that artifi-

cial variables must be zero when the optimum is reached;
however this is not required of slack and surplus variables.

It is required for the simplex algorithm that m of the vec-
torsAj be independent. LetAj1 , Aj2 , · · · , Ajm

be such a
set of independent vectors forming a basis P i.e.

P =
[

Aj1 , Aj2 , · · · , Ajm

]

(3)

A canonical system can be obtained by multiplying equa-
tion 2 byP−1 i.e.

(P−1A1)x1 + (P−1A2)x2 + (P−1A3)x3

+ · · · + (P−1An)xn = (P−1B)

or,
Â1x1 + Â2x2 + · · · + Ânxn = B̂ (4)

whereÂj = P−1Aj andB̂ = P−1B. Note thatP−1P = I

andÂji
= Ui whereUi is a unit vector with unity in compo-

nent i and zero elsewhere. Since equation 4 is in canonical
form with basic variablesxj1 , xj2 , · · · , xjm

the basic solu-
tion may be obtained by setting non-basic variables to 0.
Hence,











xj1

xj2

...
xjm











= P−1B (5)

The basic solution is feasible if̂B ≥ 0 (This implicitly
means that each component ofB̂ is greater than or equal
to 0. The next step is to eliminate thexji

’s from the equa-
tion 1 producing therelative cost factorŝcj . Let us defineγ
as in equation 6.

γ =
[

cj1 , cj2 , · · · , cjm

]

(6)

Multiplying equation 4 byγ yeilds the following:

(γÂ1)x1 + (γÂ2)x2 + · · · + (γÂn)xn = (γB̂) (7)

Note thatγÂj = γUi = cji
so that equation 7 has the same

coefficients for the basic variables as equation 1. Elimina-
tion of basic variables results in the following equations:

(c1−γÂ1)x1+(c2−γÂ2)x2+· · ·+(cn−γÂn)xn = (z−γB̂)
(8)

or, ĉ1x1 + ĉ2x2 + · · · + ĉnxn = (z − γB̂) (9)

Also,

(c1 − γP−1A1)x1 + (c2 − γP−1A2)x2

+ · · ·+ (cn − γP−1An)xn = (z − γP−1B)

which implies,

(c1 − πA1)x1 + (c2 − πA2)x2

+ · · · + (cn − πAn)xn = (z − πB)

whereπ = γP−1 andĉj = cj −γÂj . It can be clearly seen
that, the relative costs are obtained by subtracting fromcj

a weighted sum of the coefficientsa1j , a2j , · · · , amj . Also,
the weightsπ1, π2, · · · , πm are the components ofπ and
can be assumed to be equal for all j. Each of theπj are
referred to as thesimplex multipliers.

Since,

π = γP−1

Multiplying by P givesπP = γ

or,π(Pj1 , Pj2 , · · · , Pjm
) = (cj1 , cj2 , · · · , cjm

)

Hence,πPji
= cji

The basic solution is optimal if̂cj ≥ 0. If not all ĉj ≥ 0
then an improved solution can be obtained by choosings

such that
ĉs = Min ĉj (10)

The corresponding column of the A matrix is referred to as
the pivot column. Next a column must be chosen to leave
the basis such that replacing it with the entering basis col-
umn still ensures that the criteria for basic feasible solution

still holds. Recall thatB̂ = P−1B andB̂ =







b̂1

b̂2

...b̂m






and

P̂s =











â1s

â2s

...
ˆams











In order to guarantee that a new basic feasi-

ble solution will be reached we do the following:

Find row i that minimizes
b̂i

âis

(11)

This rowi is referred to as thepivot row.
This completes one iteration of the simplex algorithm.

Next, we discuss the computational cost of the Simplex al-
gorithm.



3.1 Computational Complexity

The performance of the simplex method is usually mea-
sured in terms of the number of pivots required to solve
the linear programming problem [3]. Theoretically, an up-
per bound on the number of pivots was first obtained by
Dantzig [2] where he showed that for anm× n Linear Pro-
gramming problem, there are at most

(

n
m

)

bases and hence
this is the maximum number of pivots. But,

(

n
m

)

is a very
large number. Whenn = 2m for example, it grows as
2
2m

√

πm
> ( n

m
− 1)m which is exponential in m forn

m
> 2.

This has been further studied by Klee and Minty [5].
We stress that our objective here is not to perform a com-

prehensive study of the complexity2 of the simplex algo-
rithm – rather we use this to illustrate how a distributed
optimization algorithm can be designed effectively. In the
following section we describe the structure of a distributed
data mining application and formulate the linear optimiza-
tion problem we are interested in solving.

4 The Distributed Data Model

The DDM application can be conceptualized as a
weighted graph G = (V, E) where V represents the node
set and E the edge set that connect pairs of nodes. For our
purposes, the graph is assumed to be undirected and has
a fixed topology. We also assume that communication be-
tween nodes is completely reliable.

Formally, we assume that there aren different nodes in
the network. Each node has a datasetDi residing on it3.
The cost of processing data at theith node into a data min-
ing model isνi per record. The cost of moving the data
from nodei to its neighbor nodej in the network isµij per
record. Let, (1)xij be the amount4 of dataDi transferred
from node i to node j for processing i.e.0 ≤ xij ≤ Di. (2)
X = [xij ]

n

i,j=1
be the matrix containing all the data trans-

fers in the network and is referred to as astrategy[1]. (3) δi

be the amount of data that can be processed by theith com-
pute node at the current time t. Note that as more and more
jobs are processed, the value ofδi changes and is always
less than the total amount of data that can be processed at a
node. The overall cost function for building the data mining
model for a strategyX can be obtained as follows:

C(X) =
∑

ij

µijxij + νjxij =
∑

ij

cijxij (12)

wherecij = µij + νj . The constraints for the optimization
problem described by the above equation are derived from

2An interested reader is referred to [3] for a detailed survey.
3Note that data may be either homogeneously or heterogeneously par-

titioned and this does not affect our analysis.
4This can be expressed as a percentage or total number of records trans-

ferred
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Figure 1. An example of data and bandwidth
distribution in a DDM application

Node ν

1 1.23
2 2.23
3 2.94
4 1.78
5 4.02

Table 2. ν values for the network shown on
Figure 1

the fact that the compute element of each node can process
at mostδi amount of data. Next, we illustrate our optimiza-
tion problem with an example:

Example 1 Consider the network shown in the Figure 1.
The weights on the edges represent the cost of moving the
data from nodei to its neighbor nodej i.e. µij dollars per
record. The values ofδi for each node are also indicated in
the figure, for e.g.δ1 = 300, δ2 = 600 etc. Assume that
theν values for each node are as indicated in the Table 2.
Thus for the Figure 1 the following objective function can
be written:

z = 6.03x12 + 9.04x23 + 6.52x15 + 8.28x14 +

14.42x25 + 9.58x34 + 12.32x45

where z is an user defined cost. The corresponding con-
straints for this objective function are as follows:
x12 + x14 + x15 ≤ 300, x12 + x25 + x23 ≤ 600, x15 +
x25 +x45 ≤ 300, x14 +x34 +x45 ≤ 300, x23 +x34 ≤ 300,
0 ≤ x12 ≤ D1, 0 ≤ x23 ≤ D2, 0 ≤ x15 ≤ D1,
0 ≤ x14 ≤ D1, 0 ≤ x25 ≤ D2, 0 ≤ x34 ≤ D3,
0 ≤ x45 ≤ D4 Note that in addition to the above men-
tioned constraints, nodes may have other local constraints
developed amongst themselves. For e.g. Nodes 1, 2 and 5
may agree that amount of data transferred from Node 5 to
Node 2 is twice sum of data transferred from Node 1 to 2



Node

1


Node

2


Node

5


Node

4


Node

3


300 GB
 600 GB


300 GB
 300 GB


300 GB


3.8


2.5


8.3


7.8


6.1


6.5


10.4


x
12
+ x
15 
+x
14
 <= 300

x


12

 +2 x


15

 - x


25

=0


x
12
+ x
23
+x
25
 <= 600

2x


25

 - x


12

 - x


23

=0


x
15
+ x
2
5 
+x
45
 <= 300

x
25
 - 2 x
15
 - x
45
=0


x
34
+ x
45
  <= 300


x
23
+ x
34
  <= 300


Figure 2. The Distributed LP Problem

and from Node 1 to 5. This constraint may be written as
x25 = 2x12 + 2x15.

If the linear programming problem described above is
fully constrained it can be solved by direct or iterative tech-
niques. However, if the system isunder constrained, the
solution approaches are different. Historically simplex opti-
mization [2] has been used to solve under constrained linear
systems.

5 Distributed Simplex Algorithm

In this section, we describe the distributed simplex algo-
rithm. We first give a description of a method for obtaining
the canonical representation of a linear system and then pro-
vide details of the algorithm.

5.1 Distributed Canonical Representation
of the Linear System

Consider the network described in Example 1. Instead
of all the constraints being seen at a centralized site, let
Node 1 observe onlyx12 + x14 + x15 ≤ 300, Node 2:
x12 + x23 + x25 ≤ 600, Node 3:x23 + x34 ≤ 300, Node
4: x34 + x45 ≤ 300, Node 5: x15 + x25 + x45 ≤ 300.
In addition let us assume that the following three local con-
straints are also observed at Nodes 1, 2 and 5 respectively:
x12+2x15 = x25, 2x25 = x12+x23 andx25−2x15−x45 =
0. Each site still observes the entire objective function,
namely: z = 6.03x12 + 9.04x23 + 6.52x15 + 8.28x14 +
14.42x25 + 9.58x34 + 12.32x45. Figure 2 illustrates the
problem. If all the constraints could have been centralized,
the canonical representation would be relatively simple to
obtain.

Our objective is to obtain the portion of the tableau cor-
responding to the local constraints at each node, without

having to centralize all the constraints. In order to do so,
note that each node in the network needs to have access to
the number of basic variables that it should add. This in-
formation depends on the total number of constraints in the
system. So each node needs to know exactly how many con-
straints are there in the system at any given point of time.
To do so, we propose the following converge cast based ap-
proach: Lets be an initiator node which builds a minimum
spanning tree on all nodes in the network. Following this, a
message is sent bys to all its neighbors asking how many
local constraints each node has. A neighbor on receiving
this message, either forwards it to its neighbors (if there are
any) or sends back a reply. At the end of this procedure,
Nodes has the correct value of the total number of con-
straints in the system, sayTc.

Next, Nodes sets a variablecount−Constraint to the
number of its local constraints. It traverses the minimum
spanning tree and informs each node visited of the num-
ber of constraints seen so far. LetT represent the value of
count − Constraint at nodei. Then nodei must addTc

basic variables to each of its constraints. At the end of this
procedure, all nodes have added the relevant basic variables.
Note that this procedure creates exactly the same canonical
form as would have been obtained if all the constraints were
centralized. It must be noted that the Distributed Canonical
Representation algorithm needs to be run only once at the
time of initialization. Thereafter, each node just updatesits
tableau depending on the pivots chosen at that round of it-
eration.

Once each of the nodes have the canonical representa-
tion, we are ready to describe the distributed simplex op-
timization algorithm. We assume that nodes maintain only
their local simplex tableau and the global objective function.
The goal is to obtain a solution to the global optimization
problem.

5.2 Notation and Preliminaries

Let P1, P2, · · ·Pη be a set of nodes connected to one an-
other via an underlying communication tree such that each
nodePi knows its neighborsNi. Each nodePi has its own
local constraints which may change from time to time de-
pending on the resources available at that node. The con-
straints at nodei have the formAiX i = bi whereAi rep-
resents anm × n matrix, X i is a n × 1 vector andbi is
a m × 1 vector. Thus at each node, we are interested in
solving the following linear programming problem: Find
X i ≥ 0 and Minzi satisfyingc1x1 + c2x2 + · · · cnxn = zi

subject to the constraintsAiX i = bi. The global linear
program (if all the constraint matrices could be centralized)
can be written as follows: FindX ≥ 0 and Minz satisfying
c1x1 +c2x2 + · · · cnxn = z subject to constraintsAX = B

whereA =
⋃η

i=1
Ai andB =

⋃η

i=1
bi.



Local Algorithm: Before describing our algorithm,
we first define what we mean byα-neighborhood of a
vertex,α-local query and(α, γ)-local algorithm. Theα-
neighborhood of a nodeu ∈ V is defined as, the collec-
tion of vertices at a distanceα or less from it in G i.e.
Γα(u, V ) = {v|distG(u, v) ≤ α} where distG(u, v) de-
notes the length of the shortest path in between u and v and
the length of a path is measured by the number of edges
in it. An α-local query by some vertexv is a query whose
response can be computed using some functionf(Xα(v))
whereXα(v) = {Xv|v ∈ Γα(v, V )}. An algorithm is
called(α, γ)-local if it never requires computation of aβ-
local query such thatβ > α and the total size of the re-
sponse to all suchα-local queries sent out by a peer is
bounded byγ. α can be a constant or a function parameter-
ized by the size of the network whileγ can be parameterized
by both the size of the network and the size of data at a node.
Local algorithms can be broadly classified under two cate-
gories: (1) Exact local algorithms – Local algorithms that
offer the same result that a centralized algorithm will pro-
duce. (2) Approximate local algorithms – Local algorithms
which rely on the properties of the underlying approxima-
tion technique (e.g. sampling) to provide error guarantees
on the final result and offer approximations of results.

Next, we present an exact local algorithm for solving lin-
ear optimization using the simplex method. Our assumption
is that each node contains different sets of constraints, but
has knowledge of the global objective function.

5.3 The Algorithm

At the beginning of iterationl, a nodePi has its own
constraint matrix and the objective function. The column
pivot, henceforth referred to ascol − pivoti, is that column
of the tableau corresponding to the most negative indicator
of c1, c2, · · · , cn (Note that if no negative indicator is found,
then this is the final simplex tableau). Following this, each
node forms the row ratios (ri

j , 1 ≤ j ≤ m) for each row
i.e. it dividesbi

j, 1 ≤ j ≤ m by the corresponding number
in the pivot column of that row. Let minimum ofri

j ’s be
presented asrow − pivoti. This is stored in the history
table of nodePi corresponding to iterationl.

Now the node must participate in a “local” algorithm for
determination of the minimum row ratio i.e.

Minimum(row − pivoti), i ∈ Ni (13)

We describe a simple protocol calledPush-Minfor com-
puting equation . At all times t, each node maintains a min-
imum mt,i. At time t=0, mt,i = row − pivoti. There-
after, each node follows the protocol given in Algorithm
5.3.1. When the protocol Push-Min terminates, each node
will have the exact value of the minimumrow − pivoti in

the grid. This has been shown by Bawaet. al. [8] and we
merely state the theorem here for convenience of the reader.

Theorem 1 Let D̂ be the upper bound to the diameter of
the network. Assume that Push-Min with valueD̂ is used
by the querying nodes for computing the MIN aggregate.
The answer of the query would be correct over all nodesi

that are constantly connected withs over a path of length
at mostD̂.

�

Algorithm 5.3.1 Protocol Push-Min

1. Let{m̂r} be all the values sent toi at roundt − 1.
2. Letmt,i = min({m̂r}, row − pivoti)
3. Sendmt,i to all the neighbors.
4. mt,i is the estimate of the minimum in step t

Once the Push-Min protocol converges, the node con-
taining the minimumrow − pivoti (sayPmin) will send its
row in the simplex tableau to all other nodes in the network.
Next nodePi updates its local tableau with respect to the
extra row it received from nodePmin. The algorithm, Lo-
cal Constraint Sharing Protocol is described in Table 5.3.2.
Completion of one round of the LCS-Protocol, ensures that
one iteration of the distributed local simplex algorithm is
over.

Algorithm 5.3.2 Local Constraint Sharing Protocol (LCS-
Protocol)

1. NodePi performs protocol Push-Min until there are
no more messages passed.
2. On convergence to the exact minimum, the minimum
row − pivoti is known to all nodes in the grid.
3. All the nodes use the row obtained in Step 2 to perform
Gauss Jordan elimination on the local tableau.
4. At the end of Step 3, each node locally has the updated
tableau and completes the current iteration of the simplex
algorithm.

Termination:In a termination state, two things should hap-
pen: (1) No more messages traverse in the network (2) Each
local node has all itsci > 0. Thus the state of the network
can be described by information possessed by each node.
In particular, each node will have a solution to the linear
programming problem and this will be stored inX i. Note
that this solution converges exactly to the solution if all the
constraints were centralized.

5.4 Observations

• The algorithm described above, will provide an exact
solution to the optimization problem as would have
happened if all constraints could have been centralized.



• It remains to be seen, via theoretical analysis and ex-
perimentation, how this resource management affects
the distributed data mining algorithm. This is beyond
the scope of this research.

• If the distributed system were dynamic with nodes
joining and leaving on an ad-hoc basis, the constraint
matrix for nodes currently in the network will change
and so will the objective function to be solved. This
significantly complicates the problem and we plan to
investigate this in future.

5.5 Analysis of Protocol Push-Min

The Protocol Push-Min behaves similar to the spread of an
epidemic in a large population. Consequently our analysis
is based on statistical modeling of epidemics ([6, 7]).

Definitions: A node is calledsusceptible, if it does not
have the exact minimum, but is capable of obtaining it by
communication with its immediate neighbors. If a node re-
ceives arow − pivot value less than its current value, it
becomesinfectedand willing to share this information with
other neighbors. When a node unnecessarily contacts an-
other node which also has the same information, there is no
extra information gained by this communication. The node
already having the information is called adeador immune
node. Letxt represent the number of susceptible nodes,
yt the number of infected ones andzt the dead or immune
nodes. Then,

xt + yt + zt = η (14)

Let β be theinfectionparameter defined as the proportion
of contacts between infective and susceptible per unit time;
γ is theremovalparameter defined as the proportion of in-
fective per unit time removed from the population. We also
defineρ to be theRelative Removal Rate, i.e. ρ = γ

β
. As-

suming discrete time model, the spread of the minimum
value amongst nodes can be represented by the following
difference equations:

xt+1 = xt − βxtyt (15)

yt+1 = yt + βxtyt − γyt (16)

zt+1 = zt + γyt (17)

Next, we illustrate the fact that under the Protocol Push-Min
the entire network is infected exponentially fast. This also
implies that on convergence, all nodes in the network have
the same minimal value.

Lemma 1 Under the Protocol Push-Min, the number of
susceptible nodes in the network decreases exponentially.

Proof:

Let xt andx0 represent the number of susceptible nodes
in the network at time t andt = 0 respectively. From equa-
tion 15 we have,

xt+1

xt

= 1 − βyt

= 1 − zt+1 − zt

ρ
(Using equation 17)

Thus the recursive equation forxt can be written as fol-
lows:,

xt = x0

t−1
∏

j=0

1 − zj+1 − zj

ρ

xt

x0

= (1 − z1 − z0

ρ
)(1 − z2 − z1

ρ
) · · · (1 − zt − zt−1

ρ
)

Now,

lg
xt

x0

= lg(1 − z1 − z0

ρ
) +

lg(1 − z2 − z1

ρ
) + · · · + lg(1 − zt − zt−1

ρ
)

≤ (−z1 − z0

ρ
) + (−z2 − z1

ρ
) + · · ·+ (−zt − zt−1

ρ
) (18)

≤ −
t−1
∑

j=0

zj+1 − zj

ρ

Hence,xt = x0 exp(−
t−1
∑

j=0

zj+1 − zj

ρ
)

Q.E.D.
�

5.6 Convergence of the Local Simplex Al-
gorithm

We have seen in the simplex algorithm described in sec-
tion 3, the canonical form provides an immediate criteria
for testing the optimality of a basic feasible solution. If the
criterion is not satisfied, another iteration of the simplexal-
gorithm is initiated. Formally we can state the following
theorem:

Theorem 2 (Dantzig, 1963)Given a linear program pre-
sented in feasible canonical form, there exists a finite se-
quence of pivot operations each yielding a basic feasible



solution such that the final canonical form yields an opti-
mal basic feasible solution, or an infinite class of feasible
solutions for which the values of z have no lower bound.

The proof of Theorem 2 is given in Chapter 6 of [2].
�

In order to prove that thelocal algorithm indeed con-
verges, we prove the following theorem:

Theorem 3 Assume that the linear constraints at each node
can be centralized and a feasible canonical form can be
generated. If there exists a finite sequence of pivot opera-
tions each yielding a basic feasible solution such that the
final canonical form yields an optimal basic feasible solu-
tion for the centralized scenario, then such a finite sequence
of pivot operations also exists for the Distributed Local al-
gorithm.

Proof: First note that if the linear constraints at each node
were centralized and the objective function was solved us-
ing these constraints, the Simplex Algorithm would termi-
nate (Theorem 2). In the distributed scenario, the first step
is to generate a canonical representation of the constraints
at each node. This is done using the algorithm described
in section 5.1. Note that on completion of this initiation
step, both the centralized and the local algorithms have the
exact same canonical representations. The local algorithm
now obtains the column pivot and row pivot. The row pivot
obtained after the Protocol Push-Min is executed yields the
minimum in the entire network. Thus this is identical to
the row pivot that would be obtained in each iteration of the
centralized simplex algorithm. This implies that in each it-
eration, the same row pivot and column pivot are seen both
in the centralized and local algorithms. This completes the
proof.
�

5.7 Communication Cost Analysis

The communication cost of the local distributed algo-
rithm comes from two parts: (1) The amount of communi-
cation required by the Protocol Push-Min until it converges
(2) The number of iterations for the simplex algorithm to
terminate. In the worst case, Protocol Push-Min may need
to communicate with all the nodes in the peer-to-peer grid.
This means that worst case communication cost for Push-
Min in an iteration of simplex is O (η) (whereη is the total
number of nodes in the network). Also, it was discussed
in section 3.1 that in the worst case, the number of piv-
ots needed by the simplex algorithm is

(

n
m

)

. Thus, in the
worst case, the communication cost of this distributed algo-
rithm can be exponential. However, in most practical cases,
the simplex algorithm converges inλm [2] iterations where
λ < 4 typically. This means that for most practical cases,

communication complexity is at most O (λmη). Note that
centralization of data would require O (m n) communica-
tion. Thus ifη < n

λ
significant benefits may be obtained

from this distributed resource management algorithm.

6 Experimental Results

This section presents experimental results for the lo-
cal algorithm for simplex optimization. We describe the
dataset, and the performance of our algorithm.

6.1 Dataset

The dataset at each node comprises of theAi and thebi

matrices. We simulated both these matrices and added ba-
sic variables depending on the total number of constraints in
the network as described in section 5.1. Different nodes are
allowed to have different number of constraints but always
have the same number of variables i.e.x1, x2, · · ·xn. The
goal at each node was to always solve the same objective
function i.e. Minimizec1x1 + c2x2 + · · · cnxn. The cen-
tralized dataset was obtained by concatenating all the con-
straints over all nodes in the network and the corresponding
values in thebi matrix.

6.2 Performance

We measure the communication cost of our algorithm as
follows: Let τh be the total number of messages passed in
execution of Protocol Push-Min in thehth iteration of the
algorithm. Let K be the total number of iterations required
by the local simplex algorithm. Then Total Communication
Cost (TCC) is given as follows:
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Node versus Number of Nodes.



TCC =

K
∑

h=1

τh (19)

We vary the number of nodes in the network, keeping the
size of the constraint matrix (m) and number of variables
(n) fixed. We report the Average Communication Cost per
Node (ACCN) as follows:

ACCN =
TCC

η
(20)

For our experiments the size of the simplex tableau was
chosen to be101 × 301. This means thatm = 100 and
n = 300. The constraint matrix was evenly split amongst
different number of nodes in the network. For example
when there are 10 nodes, each node had a constraint matrix
of size10×300 and so on. The number of messages passed
in each iteration of the simplex for computing the minimum
row pivot was noted and summed up over all iterations until
the simplex algorithm terminated. The Figure 3 illustrates
our results. The more or less flat nature of the curve indi-
cates that the local algorithm scales well i.e. as the number
of nodes in the network increases, the average communica-
tion cost per node still remains more or less constant.
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We also performed experiments to test the scalability of
the local algorithm with regard to: (1) The number of con-
straints (m) and (2) The number of variables (n). The Figure
4 shows the variation of the total communication cost ver-
sus the number of constraints at each node. For this experi-
ment, we used two different graph topologies containing 25
and 50 nodes each. The number of variables used was 300
at each node. In Figure 5 we examine the variation of the
total communication cost versus the number of variables at
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versus Number of Variables at each node

each node in the network. The network size was 25 and
50 as before, but the number of constraints at each node
was kept constant at 10. Interestingly, it must be noted that
the communication occurs with the neighbors only when a
minimumrow− pivot value in the entire network has to be
determined. Note that all other pivoting operations are done
locally at a node. This provides a more or less flat curve
even when the number of variables at a node is as large as
1000.

7 Conclusions and Future Work

Applications storing large quantities of distributed data
(such as astronomy sky surveys, telemedicine, e-commerce
applications) are becoming very popular in recent years.
Management of resources and data on these decentralized
applications is a challenging problem due to the inherent
hetrogeneity in the data, bandwidth limitations and access
control restrictions imposed by the applications. In this pa-
per, we design an algorithm for distributed resource and
data management using the well known simplex algorithm.
We present extensive analytical and empirical results to
demonstrate the performance of the algorithm. To the best
of our knowledge, this is the first work that emphasizes the
need for developing large scale distributed optimization al-
gorithms to enhance resource management and mining on
distributed systems. There are several directions for future
work such as developing algorithms fordynamicdistributed
mining applications, studying non-linear optimization tech-
niques and different formulations of optimization problems
such as relaxing the requirement that all nodes have knowl-
edge of the objective function.
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A Generic Local Algorithm for Mining Data
Streams in Large Distributed Systems

Ran Wolff, Kanishka Bhaduri, and Hillol KarguptaSenior Member, IEEE

Abstract— In a large network of computers or wireless sensors,
each of the components (henceforth, peers) has some data about
the global state of the system. Much of the system’s functionality
such as message routing, information retrieval and load sharing
relies on modeling the global state. We refer to the outcome of the
function (e.g., the load experienced by each peer) as themodel of
the system. Since the state of the system is constantly changing,
it is necessary to keep the models up-to-date.

Computing global data mining models e.g. decision trees,k-
means clustering in large distributed systems may be very costly
due to the scale of the system and due to communication cost,
which may be high. The cost further increases in a dynamic
scenario when the data changes rapidly. In this paper we describe
a two step approach for dealing with these costs. First, we
describe a highly efficient local algorithm which can be used
to monitor a wide class of data mining models. Then, we
use this algorithm as a feedback loop for the monitoring of
complex functions of the data such as itsk-means clustering. The
theoretical claims are corroborated with a thorough experimental
analysis.

I. I NTRODUCTION

In sensor networks, peer-to-peer systems, grid systems, and
other large distributed systems there is often the need to
model the data that is distributed over the entire system. In
most cases, centralizing all or some of the data is a costly
approach. When data is streaming and system changes are
frequent, designers face a dilemma: should they update the
model frequently and risk wasting resources on insignificant
changes, or update it infrequently and risk model inaccuracy
and the resulting system degradation.

At least three algorithmic approaches can be followed in
order to address this dilemma: Theperiodic approach is to
rebuild the model from time to time. Theincrementalapproach
is to update the model with every change of the data. Last,
the reactive approach, what we describe here, is to monitor
the change and rebuild the model only when it no longer
suits the data. The benefit of the periodic approach is its
simplicity and its fixed costs in terms of communication and
computation. However, the costs are fixed independent of the
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fact that the data is static or rapidly changing. In the former
case the periodic approach wastes resources, while on the latter
it might be inaccurate. The benefit of the incremental approach
is that its accuracy can be optimal. Unfortunately, coming
up with incremental algorithms which are both accurate and
efficient can be hard and problem specific. On the other hand,
model accuracy is usually judged according to a small number
of rather simple metrics (misclassification error, least square
error, etc.). If monitoring is done efficiently and accurately,
then the reactive approach can be applied to many different
data mining algorithm at low costs.

Local algorithms are one of the most efficient family of
algorithms developed for distributed systems. Local algorithms
are in-network algorithms in which data is never centralized
but rather computation is performed by the peers of the
network. At the heart of a local algorithm there is a data
dependent criteria dictating when nodes can avoid sending
updates to their neighbors. An algorithm is generally called
local if this criteria is independent with respect to the number
of nodes in the network. Therefore, in a local algorithm, it
often happens that the overhead is independent of the size of
the system. Primarily for this reason, local algorithms exhibit
high scalability. The dependence on the criteria for avoiding
to send messages also makes local algorithms inherently
incremental. Specifically, if the data changes in a way that
does not violate the criteria, then the algorithm adjusts tothe
change without sending any message.

Local algorithms were developed, in recent years, for a large
selection of data modeling problems. These include association
rule mining [1], facility location [2], outlier detection [3],
L2 norm monitoring [4], classification [5], and multivariate
regression [6]. In all these cases, resource consumption was
shown to converge to a constant when the number of nodes
is increased. Still, the main problem with local algorithms,
thus far, has been the need to develop one for every specific
problem.

In this work we make the following progress. First, we
generalize a common theorem underlying the local algorithms
in [1], [2], [4], [5], [6] extending it fromR to R

d. Next, we
describe a generic algorithm, relying on the said generalized
theorem, which can be used to compute arbitrarily complex
functions of the average of the data in a distributed system;
we show how the said algorithm can be extended to other
linear combinations of data, including weighted averages of
selections from the data. Then, we describe a general frame-
work for monitoring, and consequent reactive updating of any
model of horizontally distributed data. Finally, we describe the
application of this framework for the problem of providing a
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k clustering which is a good approximation of thek-means
clustering of data distributed over a large distributed system.
Our theoretical and algorithmic results are accompanied with
a thorough experimental validation, which demonstrates both
the low cost and the excellent accuracy of our method.

The rest of this paper is organized as follows. The next
section describes our notations, assumptions, and the formal
problem definition. In Section III we describe and prove the
main theorem of this paper. Following, Section IV describes
the generic algorithm and its specification for the L2 thresh-
olding problem. Section V presents the reactive algorithmsfor
monitoring three typical data mining problems –viz. means
monitoring andk-means monitoring. Experimental evaluation
is presented in Section VI while Section VII describes related
work. Finally, Section VIII concludes the paper and lists some
prospective future work.

II. N OTATIONS, ASSUMPTIONS, AND PROBLEM

DEFINITION

In this section we discuss the notations and assumptions
which will be used throughout the rest of the paper. The main
idea of the algorithm is to have peers accumulate sets of input
vectors (or summaries thereof) from their neighbors. We show
that under certain conditions on the accumulated vectors a
peer can stop sending vectors to its neighbors long before it
collects all input vectors. Under these conditions one of two
things happens: Either all peers can compute the result from
the input vectors they have already accumulated or at least
one peer will continue to update its neighbors – and through
them the entire network – until all peers compute the correct
result.

A. Notations

Let V = {p1, . . . , pn} be a set of peers (we use the term
peers to describe the peers of a peer-to-peer system, motes of
a wireless sensor network, etc.) connected to one another via
an underlying communication infrastructure. The set of peers
with which pi can directly communicate,Ni, is known topi.
Assuming connectedness,Ni always containspi and at least
one more peer. Additionally,pi is given a time varying set of
input vectors inR

d.
Peers communicate with one another by sending sets of

input vectors (below, we show that for our purposes statistics
on sets are sufficient). We denote byXi,j the latest set of
vectors sent by peerpi to pj . For ease of notation, we
denote the input ofpi (mentioned above)Xi,i. Thus,

⋃

pj∈Ni

Xj,i

becomes the latest set of input vectors known topi.
Assuming reliable messaging, once a message is delivered

both pi and pj know bothXi,j and Xj,i. We further define
four sets of vectors that are central to our algorithm.

Definition 2.1: The knowledgeof pi, is Ki =
⋃

pj∈Ni

Xj,i.

Definition 2.2: Theagreementof pi and any neighborpj ∈
Ni is Ai,j = Xi,j ∪Xj,i.

Definition 2.3: The withheld knowledgeof pi with respect
to a neighborpj is the subtraction of the agreement from the
knowledgeWi,j = Ki \ Ai,j .

Definition 2.4: Theglobal inputis the set of all inputsG =
⋃

pi∈V

Xi,i.

We are interested in inducing functions defined onG. Since
G is not available at any peer, we derive conditions onK, A
andW which will allow us to learn the function onG. Our
next set of definitions deal with convex regions which are a
central point of our main theorem to be discussed in the next
section.

A regionR ⊆ R
d is convex, if for every two pointsx, y ∈ R

and everyα ∈ [0, 1], the weighted averageα ·x+(1− α) ·y ∈
R. Let F be a function fromR

d to an arbitrary domain
O. F is constant onR if ∀x, y ∈ R : F (x) = F (y).
Any set or regions{R1, R2, . . . } induces a cover ofRd,
R = {R1, R2, . . . , T} in which thetie regionT includes any
point of R

d which is not included by one of the other regions.
We denote a given coverRF respectiveof F if for all regions
except the tie regionF is constant. Finally, for anyx ∈ R

d

we denoteRF (x) the first region ofRF which includesx.

B. Assumptions

Throughout this paper, we make the following assumptions:
Assumption 2.1:Communication is reliable.
Assumption 2.2:Communication takes place over a span-

ning communication tree.
Assumption 2.3:Peers are notified on changes in their own

dataxi, and in the set of their neighborsNi.
Assumption 2.4:Input vectors are unique.
Assumption 2.5:A respective coverRF can be precom-

puted forF .
Note that assumption 2.1 can easily be enforced in all ar-

chitectures as the algorithm poses no requirement for ordering
or timeliness of messages. Simple approaches, such as piggy-
backing message acknowledgement can thus be implemented
in even the most demanding scenarios – those of wireless
sensor networks. Assumption 2.3 can be enforced using a
heartbeat mechanism. Assumption 2.2 is the strongest of the
three. Although solutions that enforce it exist (see for example
[7]), it seems a better solution would be to remove it altogether
using a method as described by Lisset al. [8]. However,
describing such a method in this generic setting is beyond the
scope of this paper. Assumption 2.4 can be enforced by adding
the place and time of origin to each point and then ignoring
it in the calculation ofF . Assumption 2.5 does not hold for
any function. However, it does hold for many interesting ones.
The algorithm described here can be sensitive to an inefficient
choice of respective cover.

Note that, the correctness of the algorithm cannot be guar-
anteed in case the assumptions above do not hold. Specifically,
duplicate counting of input vectors can occur if Assumption
2.2 does not hold — leading to any kind of result. If messages
are lost then not even consensus can be guaranteed. The only
positive result which can be proved quite easily is that if at
any time the communication infrastructure becomes a forest,
any tree will converge to the value of the function on the input
of the peers belonging to that tree.
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C. Sufficient statistics

The algorithm we describe in this paper deals with com-
puting functions of linear combinations of vectors inG. For
clarity, we will focus on one such combination – the average.
Linear combinations, and the average among them, can be
computed from statistics. If each peer learns any input vector
(other than its own) through just one of its neighbors, then
for the purpose of computingKi, Ai,j , andWi,j , the various
Xi,j can be replaced with their average,Xi,j , and their size,
|Xi,j |. To make sure that happens, all that is required from
the algorithm is that the content of every message sent bypi

to its neighborpj would not be dependent on messagespj

previously sent topi. In this way, we can rewrite:

• |Ki| =
∑

pj∈Ni

|Xj,i|

• |Ai,j | = |Xi,j |+ |Xj,i|
• |Wi,j | = |Ki| − |Ai,j |
• Ki =

∑

pj∈Ni

|Xj,i|
|Ki|

Xj,i

• Ai,j =
|Xi,j |

|Ai,j |
Xi,j +

|Xj,i|

|Ai,j |
Xj,i

• Wi,j = |Ki|

|Wi,j |
Ki − |Ai,j |

|Wi,j |
Ai,j or nil in case|Wi,j | = 0 .

D. Problem Definition

We now formally define the kind of computation provided
by our generic algorithm and our notion of correct and of
accurate computation.

Problem definition: Given a functionF , a spanning network
treeG(V, E) which might change with time, and a set of time
varying input vectorsXi,i at everypi ∈ V , the problem is to
compute the value ofF over the average of the input vectors
G.

While the problem definition is limited to averages of data
it can be extended to weighted averages by simulation. If a
certain input vector needs to be given an integer weightω

then ω peers can be simulated inside the peer that has that
vector and each be given that input vector. Likewise, if it is
desired that the average be taken only over those inputs which
comply with some selection criteria then each peer can apply
that criteria toXi,i apriori and then start off with the filtered
data. Thus, the definition is quite conclusive.

Because the problem is defined for data which may change
with time, a proper definition of algorithmic correctness must
also be provided. We define theaccuracyof an algorithm as
the number of peers which compute the correct result at any
given time, and denote an algorithm asrobust if it presents
constant accuracy when faced with stationarily changing data.
We denote an algorithm aseventually correctif, once the
data stops changing, and regardless of previous changes, the
algorithm is guaranteed to converge to a hundred percent
accuracy.

Finally, the focus of this paper is onlocal algorithms. As
defined in [1], a local algorithm is one whose performance
is not inherently dependent on the system size,i.e., in which
|V | is not a factor in any lower bound on performance. Notice
locality of an algorithm can be conditioned on the data. For
instance, in [1] a majority voting algorithm is described which

may perform as badly asO
(

|V |2
)

in case the vote is tied.
Nevertheless when the vote is significant and the distribution
of votes is random the algorithm will only consume constant
resources, regardless of|V |. Alternative definitions exist for
local algorithms and are thoroughly discussed in [9] and [10].

III. M AIN THEOREMS

The main theorem of this paper lay the background for
a local algorithm which guarantees eventual correctness in
the computation of a wide range of ordinal functions. The
theorem generalizes the local stopping rule described in [1]
by describing a condition which bounds the whereabouts of
the global average vector inRd depending on theKi Ai,j and
Wi,j of each peerpi.

Theorem 3.1:[Main Theorem] Let G(V, E) be a spanning
tree in whichV is a set of peers and letXi,i be the input of
pi, Ki be its knowledge, andAi,j andWi,j be its agreement
and withheld knowledge with respect to a neighborpj ∈ Ni

as defined in the previous section. LetR ⊆ R
d be any convex

region. If at a given time no messages traverse the network
and for allpi andpj ∈ Ni Ki,Ai,j ∈ R and eitherWi,j = ∅
orWi,j ∈ R as well, thenG ∈ R.

Proof: Consider a communication graphG(V, E) in
which for some convexR and everypi andpj such thatpj ∈
Ni it holds thatKi,Ai,j ∈ R and eitherWi,j = ∅ orWi,j ∈ R

as well. Assume an arbitrary leafpi is eliminated and all of
the vectors inWi,j are added to its sole neighborpj . The
new knowledge ofpj is K′

j = Kj ∪Wi,j . Since by definition
Kj ∩ Wi,j = ∅, the average vector of the new knowledge of
pj , K′

j , can be rewritten asKj ∪Wi,j = α·Kj +(1−α)·Wi,j

for some α ∈ [0, 1]. Since R is convex, it follows from
Kj ,Wi,j ∈ R thatK′

j ∈ R too.
Now, consider the change in the withheld knowledge of

pj with respect to any other neighborpk ∈ Nj resulting from
sending such a message. The newW ′

j,k =Wi,j∪Wj,k. Again,
sinceWi,j ∩Wj,k = ∅ and sinceR is convex it follows from
Wi,j ,Wj,k ∈ R thatW ′

j,k ∈ R as well. Finally, notice the
agreements ofpj with any neighborpk exceptpi do not change
as a result of such message.

Hence, following elimination ofpi we have a communica-
tion tree with one less peer in which the same conditions still
apply to every remaining peer and its neighbors. Proceeding
with elimination we can reach a tree with just one peerp1,
still assured thatK1 ∈ R. Moreover, since no input vector was
lost at any step of the eliminationK1 = G. Thus, we have that
under the said conditionsG ∈ R.

Theorem 3.1 is exemplified in Figure 1. Three peers are
shown, each with a drawing of its knowledge, it agreement
with its neighbor or neighbors, and the withheld knowledge.
Notice the agreementA1,2 drawn forp1 is identical toA2,1 at
p2. For graphical simplicity we assume all of the vectors have
the same weight – and avoid expressing it. We also depict
the withheld knowledge vectors twice – once as a subtraction
of the agreement from the knowledge – using a dotted line –
and once – shifted to the root – as measured in practice. If
the position of the three peers’ data is considered vis-a-vis the
circular region then the conditions of Theorem 3.1 hold.
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Now, assume what would happen when peerp1 is elimi-
nated. This would mean that all of the knowledge it withholds
from p2 is added toK2 and toW2,3. Since we assumed
|W1,2| = |K2| = 1 the result is simply the averaging of the
previousK2 andW1,2. Notice both these vectors remain in
the circular region.

Lastly, asp2 is eliminated as well,W2,3 – which now also
includesW1,2 – is blended into the knowledge ofp3. Thus,K3

becomes equal toG. However, the same argument, as applied
in the elimination ofp1, assures the newK3 is in the circular
region as well.

(a) Three peersp1, p2 andp3 wherep2 is connected to both other peers.

(b) After elimination ofp1.

(c) After elimination ofp2.

Fig. 1. At Figure 1(a) the data at all three peers concur with the conditions
of Theorem 3.1 with respect to the circle – which is a convex region. If
subsequently peerp1 is eliminated andW1,2 sent top2 then A2,3 is not
affected andK2 and W2,3 do change but still remain in the same region.
When subsequently, in Figure 1(c),p2 is eliminated againK3 = G which
demonstratesG is in the circular region.

To see the relation of Theorem 3.1 to the previous the
Majority-Rule algorithm [1], one can restate the majority
voting problem as deciding whether the average of zero-one
votes is in the segment[0, λ) or the segment[λ, 1]. Both
segments are convex, and the algorithm only stops if for all
peers the knowledge is further away fromλ than the agreement
– which is another way to say the knowledge, the agreement,
and the withheld data are all in the same convex region.
Therefore, Theorem 3.1 generalizes the basic stopping rule
of Majority-Rule to any convex region inRd.

Two more issues arise from this comparison: one is that in
Majority-Rule the regions used by the stopping rule coincide
with the regions in whichF is constant. The other is that in
the Majority-Rule, every peer decides according to which of
the two regions it should try to stop by choosing the region
which includes the agreement. Since there are just two non-

overlapping region, peers reach consensus on the choice of
region and, hence, on the output.

These two issues become more complex for a generalF
over R

d. First, for many interestingF , the regions in which
the function is constant are not all convex. Also, there could
be many more than two such regions, and the selection of the
region in which the stopping rule needs be evaluated becomes
non-trivial.

We therefore provide two lemmas which provide a way to
deal with the selection problem and an answer to the case
where in which a function cannot be neatly described as a
partitioning ofRd to convex regions in which it is constant.

Lemma 3.2:[Consensus]Let G(V, E) be a spanning tree
in which V is a set of peers and letXi,i be the input ofpi,
Ki be its knowledge, andAi,j andWi,j be its agreement and
withheld knowledge with respect to a neighborpj ∈ Ni as
defined in the previous section. LetRF = {R1, R2, . . . , T}
be aF -respective cover, and letRF (x) be the first region in
RF which containsx. If for every peerpi and everypj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

then for every two peerspi and pℓ,
RF

(

Ki

)

= RF

(

Kℓ

)

.
Proof: We prove this by contradiction. Assume that

the result is not true. Then there are two peerspi and
pℓ with RF

(

Ki

)

6= RF

(

Kℓ

)

. Since the communication
graph is a spanning tree, there is a path frompi to pℓ and
somewhere along that path there are two neighbor peers,pu

andpv such thatRF

(

Ku

)

6= RF

(

Kv

)

. Notice, however, that
Au,v = Av,u. Therefore, eitherRF

(

Ku

)

6= RF

(

Au,v

)

or
RF

(

Kv

)

6= RF

(

Av,u

)

— a contradiction.
Building on Lemma 3.2 above, a variant of Theorem 3.1 can

be proved which makes use of a respective cover to compute
the value ofF .

Theorem 3.3:Let G(V, E) be a spanning tree in whichV
is a set of peers and letXi,i be the input ofpi, Ki be its
knowledge, andAi,j andWi,j be its agreement and withheld
knowledge with respect to a neighborpj ∈ Ni as defined
in the previous section. LetRF = {R1, R2, . . . , T} be a
respective cover, and letRF (x) be the first region inRF

which containsx. If for every peerpi and everypj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

6= T and if furthermore eitherWi,j =
∅ or Wi,j ∈ RF

(

Ki

)

then for everypi, F(Ki) = F(G).
Proof: From Lemma 3.2 it follows that all peers compute

the sameRF

(

Ki

)

. Thus, since this region is notT , it must be
convex. It therefore follows from Theorem 3.1 thatG is, too,
in RF

(

Ki

)

. Lastly, sinceRF is a respective coverF must
be constant on all regions exceptT . Thus, the value ofF(G)
is equal to that ofF(Ki), for anypi.

IV. A G ENERIC ALGORITHM AND ITS INSTANTIATION

This section describes a generic algorithm which relies
on the results presented in the previous section to compute
the value of a given function of the average of the input
vectors. This generic algorithm is both local and eventually
correct. The section proceeds to exemplify how this generic
algorithm can be used by instantiating it to compute whether
the average vector has length above a given thresholdF (x) =
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{

0 ‖x‖ ≤ ǫ

1 ‖x‖ > ǫ
. L2 thresholding is both an important problem

in its own right and can also serve as the basis for data mining
algorithms as will be described in the next section.

A. Generic Algorithm

The generic algorithm, depicted in Algorithm 1, receives as
input the functionF , a respective coverRF , and a constant,
L, whose function is explained below. Each peerpi outputs,
at every given time, the value ofF based on its knowledge
Ki.

The algorithm is event driven. Events could be one of the
following: a message from a neighbor peer, a change in the
set of neighbors (e.g., due to failure or recovery), a change in
the local data, or the expiry of a timer which is always set to
no more thanL. On any such eventpi calls theOnChange
method. When the event is a messageX, |X | received from
a neighborpj , pi would updateXi,j to X and |Xi,j | to |X |
before it callsOnChange.

The objective of theOnChangemethod is to make certain
that the conditions of Lemma 3.3 are maintained for the peer
that runs it. These conditions requireKi, Ai,j , andWi,j (in
case it is not null) to all be inRF

(

Ki

)

, which is not the tie
regionT . Of the three,Ki cannot be manipulated by the peer.
The peer thus manipulates bothAi,j , andWi,j by sending a
message topj , and subsequently updatingXi,j .

In caseRF

(

Ki

)

6= T one way to adjustAi,j andWi,j so
that the conditions of Lemma 3.3 are maintained is to send
the entireWi,j to pj . This would makeAi,j equal toKi, and
therefore makeAi,j equal toKi and inRF

(

Ki

)

. Additionally,
Wi,j becomes empty. However, this solution is one of the
many possible changes toAi,j andWi,j , and not necessarily
the optimal one. We leave the method of finding a value for
the next messageXi,j which should be sent bypi unspecified
at this stage, as it may depend on characteristics of the specific
RF .

The other possible case is thatRF

(

Ki

)

= T . SinceT is
always the last region ofRF , this meansKi is outside any
other regionR ∈ RF . SinceT is not necessarily convex, the
only option which will guarantee eventual correctness in this
case is ifpi sends the entire withheld knowledge to every
neighbor it has.

Lastly, we need to address the possibility that although
|Wi,j | = 0 we will haveAi,j which is different fromKi.
This can happen,e.g., when the withheld knowledge is sent
in its entirety and subsequently the local data changes. Notice
this possibility results only from our choice to use sufficient
statistics rather than sets of vectors: Had we used sets of
vectors,Wi,j would not have been empty, and would fall into
one of the two cases above. As it stands, we interpret the case
of non-emptyWi,j with zero |Wi,j | as ifWi,j is in T .

It should be stressed here that if the conditions of Lemma
3.3 hold the peer does not need to do anything even if its
knowledge changes. The peer can rely on the correctness of
the general results from the previous section which assure that
if F

(

Ki

)

is not the correct answer then eventually one of its
neighbors will send it new data and changeKi. If, one the

other hand, one of the aforementioned cases do occur, then
pi sends a message. This is performed by theSendMessage
method. IfKi is in T thenpi simply sends all of the withheld
data. Otherwise, a message is computed which will assureAi,j

andWi,j are inRF

(

Ki

)

.
One last mechanism employed in the algorithm is a “leaky

bucket” mechanism. This mechanism makes certain no two
messages are sent in a period shorter than a constantL. Leaky
bucket is often used in asynchronous, event-based systems to
prevent event inflation. Every time a message needs to be sent,
the algorithm checks how long has it been since the last one
was sent. If that time is less thanL, the algorithm sets a timer
for the reminder of the period and callsOnChangeagain when
the timer expires. Note that this mechanism does not enforce
any kind of synchronization on the system. It also does not
affect correctness: at most it can delay convergence because
information would propagate more slowly.

Algorithm 1 Generic Local Algorithm

Input of peer pi: F , RF = {R1, R2, . . . , T}, L, Xi,i, and
Ni

Ad hoc output of peer pi: F
(

Ki

)

Data structure for pi: For eachpj ∈ Ni Xi,j , |Xi,j |, Xj,i,
|Xi,j |, last message

Initialization: last message← −∞
On receiving a messageX, |X | from pj :
– Xj,i ← X, |Xj,i| ← |X |
On change inXi,i, Ni, Ki or |Ki|: call OnChange()
OnChange()
For eachpj ∈ Ni:
– If one of the following conditions occur:
– 1.RF

(

Ki

)

= T and eitherAi,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 andAi,j 6= Ki

– 3.Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then
– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L

– If RF

(

Ki

)

= T then the newXi,j and |Xi,j | areWi,j

and |Wi,j |, respectively
– Otherwise compute newXi,j and |Xi,j | such that
Ai,j ∈ RF

(

Ki

)

and eitherWi,j ∈ RF

(

Ki

)

or |Wi,j | = 0
– last message← time ()
– SendXi,j , |Xi,j | to pj

Else
– Wait L− (time ()− last message) time units and then
call OnChange()

B. Eventual correctness

Proving eventual correctness requires showing that if both
the underlying communication graph and the data at every peer
cease to change then after some length of time every peer
would output the correct resultF

(

G
)

; and that this would
happen forany static communication treeG(V, E), any static
dataXi,i at the peers, and any possible state of the peers.
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Proof: [Eventual Correctness] Regardless of the state of
Ki, Ai,j , Wi,j , the algorithm will continue to send messages,
and accumulate more and more ofG in eachKi until one of
two things happens: One is that for every peerKi = G and
thusAi,j = Ki for all pj ∈ Ni. Alternatively, for everypi Ai,j

is inRF

(

Ki

)

, which is different thanT , andWi,j is either in
RF

(

Ki

)

as well or is empty. In the former case,Ki = G, so
every peer obviously computesF

(

Ki

)

= F
(

G
)

. In the latter
case, Theorem 3.1 dictates thatG ∈ Rℓ, soF

(

Ki

)

= F
(

G
)

too. Finally, provided that every message sent in the algorithm
carries the information of at least one input vector to a peer
that still does not have it, the number of messages sent between
the time the data stops changing and the time in which every
peer has the data of all other peers is bounded byO

(

|V |2
)

.

C. Local L2 Norm Thresholding

Following the description of a generic algorithm, specific
algorithms can be implemented for various functionsF . One
of the most interesting functions (also dealt with in our
previous paper [4]) is that of thresholding the L2 norm of
the average vector, i.e., deciding if

∥

∥G
∥

∥ ≤ ǫ.
To produce a specific algorithm from the generic one, the

following two steps need to be taken:

1) A respective coverRF , needs to be found
2) A method for findingXi,j and|Xi,j | which assures that

bothAi,j andWi,j are inR needs to be formulated

In the case of L2 thresholding, the area for whichF outputs
true – the inside of anǫ circle – is convex. This area is denoted
Rin. The area outside theǫ-circle can be divided by randomly
selecting unit vectorŝu1, . . . , ûℓ and then drawing the half-
spacesHj = {~x : ~x · ûj ≥ ǫ}. Each half-space is convex.
Also, they are entirely outside theǫ circle, soF is constant on
every Hj . {Rin, H1, . . . , Hℓ, T } is, thus, a respective cover.
Furthermore, by increasingℓ, the area between the halfspaces
and the circle or the tie area can be minimized to any desired
degree.

It is left to describe how theSendMessagemethod com-
putes a message that forcesAi,j andWi,j into the region
which containsKi if they are not in it. A related algorithm,
Majority-Rule [1], suggests sending all of the withheld knowl-
edge in any case. However, experiments with dynamic data
hint this method may be unfavorable. If all or most of the
knowledge is sent and the data later changes the withheld
knowledge becomes the difference between the old and the
new data. This difference tends to be far more noisy than the
original data. Thus, while the algorithm makes certainAi,j and
Wi,j are brought into the same region asKi, it still makes an
effort to maintain some withheld knowledge.

Although it may be possible to optimize the size of|Wi,j |
we take the simple and effective approach of testing an
exponentially decreasing sequence of|Wi,j | values, and then
choosing the first such value satisfying the requirements for
Ai,j andWi,j . When a peerpi needs to send a message, it first

sets the newXi,j to |Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|
. Then, it tests a sequence

of values for|Xi,j |. Clearly, |Xi,j | = |Ki| − |Xj,i| translates

to an empty withheld knowledge and must concur with the
conditions of Lemma 3.3. However, the algorithm begins with
|Xi,j | = |Ki|−|Xj,i|

2
and only gradually increases the weight,

trying to satisfy the conditions without sending all data.

Algorithm 2 Local L2 Thresholding
Input of peer pi: ǫ, L, Xi,i, Ni, ℓ

Global constants:A random seeds
Data structure for pi: For eachpj ∈ Ni Xi,j , |Xi,j |, Xj,i,
|Xi,j |, last message

Output of peer pi: 0 if
∥

∥Ki

∥

∥ ≤ ǫ, 1 otherwise
Computation of RF :
Let Rin = {~x : ‖~x‖ ≤ ǫ}
Let û1, . . . , ûℓ be pseudo-random unit vectors and let
Hj = {~x : ~x · ûj ≥ ǫ}
RF = {Rin, H1, . . . , Hℓ, T }.
Computation of |Xi,j | and Xi,j :

Xi,j ← |Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|

w ← |X | ← |Ki| − |Xj,i|
Do
– w ← ⌊w

2
⌋

– |Xi,j | ← |Ki| − |Xj,i| − w

While (Ai,j 6∈ RF

(

Ki

)

orWi,j 6∈ RF

(

Ki

)

and |Wi,j | 6= 0)
Initialization: last message← −∞, computeRF

On receiving a messageX, |X | from pj :
– Xj,i ← X, |Xj,i| ← |X |
On change inXi,i, Ni, Ki or |Ki|: call OnChange()
OnChange()
For eachpj ∈ Ni:
– If one of the following conditions occur:
– 1.RF

(

Ki

)

= T and eitherAi,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 andAi,j 6= Ki

– 3.Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then
– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L

– If RF

(

Ki

)

= T then the newXi,j and |Xi,j | areWi,j

and |Wi,j |, respectively
– Otherwise compute newXi,j and |Xi,j |
– last message← time ()
– SendXi,j , |Xi,j | to pj

Else
– Wait L− (time ()− last message) time units and then
call OnChange()

V. REACTIVE ALGORITHMS

The previous section described an efficient generic local
algorithm, capable of computing any function even when the
data and system are constantly changing. In this section, we
leverage this powerful tool to create a framework for producing
and maintaining various data mining models. This framework
is simpler than the current methodology of inventing a specific
distributed algorithm for each problem and may be as efficient
as its counterparts.
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The basic idea of the framework is to employ a sim-
ple, costly, and possibly inaccurateconvergecastalgorithm
in which a single peer samples data from the network and
then computes, based on this “best-effort” sample, a data
mining model. Then, this model isbroadcast to the entire
network; again, a technique which might be costly. Once, every
peer is informed with the current model, a local algorithm,
which is an instantiation of the generic algorithm is used
in order to monitor the quality of the model. If the model
is not sufficiently accurate or the data has changed to the
degree that the model no longer describes it, the monitoring
algorithm alerts and triggers another cycle of data collection. It
is also possible to tune the algorithm by increasing the sample
size if the alerts are frequent and decreasing it when they
are infrequent. Since the monitoring algorithm is eventually
correct, eventual convergence to a sufficiently accurate model
is very likely. Furthermore, when the data only goes through
stationary changes, the monitoring algorithm triggers false
alerts infrequently and hence can be extremely efficient. Thus,
the overall cost of the framework is low.

We describe two instantiations of this basic framework, each
highlighting a different aspect. First we discuss the problem
of computing the mean input vector, to a desired degree of
accuracy. Then, we present an algorithm for computing a
variant of thek-means clusters suitable for dynamic data.

A. Mean Monitoring

The problem of monitoring the mean of the input vectors has
direct applications to many data analysis tasks. The objective
in this problem is to compute a vectorµ which is a good
approximation forG. Formally, we require that

∥

∥G − µ
∥

∥ ≤ ǫ

for a desired value ofǫ.
For any given estimateµ, monitoring whether

∥

∥G − µ
∥

∥ ≤
ǫ is possible via direct application of the L2 thresholding
algorithm from Section IV-C. Every peerpi subtractsµ from
every input vector inXi,i. Then, the peers jointly execute L2
Norm Thresholding over the modified data. If the resulting
average is inside theǫ-circle thenµ is a sufficiently accurate
approximation ofG; otherwise, it is not.

The basic idea of the mean monitoring algorithm is to
employ a convergecast-broadcast process in which the con-
vergecast part computes the average of the input vectors and
the broadcast part delivers the new average to all the peers.
The trick is that, before a peer sends the data it collected upthe
convergecast tree, it waits for an indication that the current µ is
not a good approximation of the current data. Thus, when the
currentµ is a good approximation, convergecast is slow and
only progresses as a result of false alerts. During this time,
the cost of the convergecast process is negligible compared
to that of the L2 thresholding algorithm. When, on the other
hand, the data does change, all peers alert almost immediately.
Thus, convergecast progresses very fast, reaches the root,and
initiates the broadcast phase. Hence, a newµ is delivered to
every peer, which is a more updated estimate ofG.

The details of the mean monitoring algorithm are given in
Algorithm 3. One detail is that of an alert mitigation constant,
τ , selected by the user. The idea here is that an alert should

persist for a given period of time before the convergecast
advances. Experimental evidence suggests that settingτ to
even a fraction of the average edge delay greatly reduces the
number of convergecasts without incurring a significant delay
in the updating ofµ.

A second detail is the separation of the data used for alerting
– the input of the L2 thresholding algorithm – from that which
is used for computing the new average. If the two are the
same then the new average may be biased. This is because an
alert, and consequently an advancement in the convergecast,
is bound to be more frequent when the local data is extreme.
Thus, the initial data, and later every new data, is randomly
associated with one of two buffers:Ri, which is used by the
L2 Thresholding algorithm, andTi, on whom the average is
computed when convergecast advances.

A third detail is the implementation of the convergecast
process. First, every peer tracks changes in the knowledge of
the underlying L2 thresholding algorithm. When it moves from
inside theǫ-circle to outside theǫ-circle the peer takes note of
the time, and sets a timer toτ time units. When a timer expires
or when a data message is received from one of its neighbors
pi checks if currently there is an alert and if it was recorded
τ or more time units ago. If so, it counts the number of its
neighbors from whom it received a data message. If it received
data messages from all of its neighbors, the peer moves to the
broadcast phase, computes the average of its own data and
of the received data and sends it to itself. If it has received
data messages from all but one of the neighbors then this
one neighbor becomes the peer’s parent in the convergecast
tree; the peer computes the average of its own and its other
neighbors’ data, and sends the average with its cumulative
weight to the parent. Then, it moves to the broadcast phase. If
two or more of its neighbors have not yet sent a data messages
pi keeps waiting.

Lastly, the broadcast phase is fairly straightforward. Every
peer which receives the newµ vector, updates its data by
subtracting it from every vector inRi and transfers those
vectors to the underlying L2 thresholding algorithm. Then,
it re-initializes the buffers for the data messages and sends the
new µ vector to its other neighbors and changes the status to
convergecast. There could be one situation in which a peer
receives a newµ vector even though it is already in the
convergecast phase. This happens when two neighbor peers
concurrently become roots of the convergecast tree (i.e., when
each of them concurrently sends the last convergecast message
to the other). To break the tie, a root peerpi which receives
µ from a neighborpj while in the convergecast phase ignores
the message ifi > j it ignores the message. Otherwise ifi < j

pi treats the message just as it would in the broadcast phase.

B. k-Means Monitoring

We now turn to a more complex problem, that of computing
the k-means of distributed data. The classic formulation of
the k-means algorithm is a two step recursive process in
which every data point is first associated with the nearest of
k centroids, and then every centroid is moved to the average
of the points associated with it – until the average is the same
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Algorithm 3 Mean Monitoring
Input of peer pi: ǫ, L, Xi,i, the set of neighborsNi, an
initial vector µ0, an alert mitigation constantτ .
Output available to every peerpi: An approximated means
vectorµ
Data structure of peer pi: Two sets of vectorsRi andTi, a
timestamplast change, flags:alert, root, andphase, for
eachpj ∈ Ni, a vectorvj and a countercj

Initialization:
Setµ← µ0, alert← false, phase← convergecast

Split Xi,i evenly betweenRi andTi

Initialize an L2 thresholding algorithm with the inputǫ, L,
{x− µ : x ∈ Ri}, Ni

Setvi, ci to Ti, |Ti|, respectively, andvj , cj to 0, 0 for all
otherpj ∈ Ni

On addition of a new vector x to Xi,i:
Randomly addx to eitherRi or Ti

If x was added toRi, update the input of the L2
thresholding algorithm to{x− µ : x ∈ Ri}
Otherwise, updatevi andci.
On change inF

(

Ki

)

of the L2 thresholding algorithm:
If

∥

∥Ki

∥

∥ ≥ ǫ andalert = false then
– setlast change← time()
– setalert← true

– set a timer toτ time units
If

∥

∥Ki

∥

∥ < ǫ then
– Setalert← false

On receiving a data messagev, c from pj ∈ Ni:
Setvj ← v, cj ← c

Call Convergecast
On timer expiry or call to Convergecast:
If alert = false return
If time()− last change < τ set timer to
time() + τ − last change and return
If for all pk ∈ Ni except for oneck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Sends, s to pl

– Setphase← Broadcast

If for all pk ∈ Ni ck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Setphase← Convergecast

– Sendµ to all pk ∈ Ni

On receiving µ′ from pj ∈ Ni:
If phase = convergecast and i > j then return
Setµ← µ′

Replace the input of the L2 thresholding algorithm with
{x− µ : x ∈ Ri}
Setphase← convergecast and set allcj to 0
Sendµ to all pk 6= pj ∈ Ni

Other than that follow the L2 thresholding algorithm

as the centroid. To make the algorithm suitable for a dynamic
data setup, we relax the stopping criteria. In our formulation,
a solution is considered admissible when the average of point
is within an ǫ-distance of the centroid with whom they are
associated.

Similar to the mean monitoring, thek-means monitoring al-
gorithm (Algorithm. 4) is performed in a cycle of convergecast
and broadcast. The algorithm, however, is different in some
important respects. First, instead of taking part of just one
execution of L2 thresholding, each peer takes part ink such
executions – one per centroid. The input of theℓth execution
are those points in the local data setXi,i for which theℓth

centroid, cℓ, is the closest. Thus, each execution monitors
whether one of the centroids needs to be updated. If even one
execution discovers that the norm of the respective knowledge
∥

∥

∥
Kℓ

i

∥

∥

∥
is greater thanǫ, the peer alerts, and if the alert persists

for τ time units the peer advances the convergecast process.
Another difference betweenk-means monitoring and mean

monitoring is the statistics collected during convergecast. In k-
means monitoring, that statistics is a sample of sizeb (dictated
by the user) from the data. Each peer samples with returns
from the samples it received from its neighbors, and from
its own data, such that the probability of sampling a point is
proportional to a weight. The result of this procedure is that
every input point stands an equal chance to be included in
the sample that arrives to the root. The root then computes
the k-means on the sample, and sends the new centroids in a
broadcast message.

VI. EXPERIMENTAL VALIDATION

To validate the performance of our algorithms we conducted
experiments on a simulated network of thousands of peers. In
this section we discuss the experimental setup and analyze the
performance of the algorithms.

A. Experimental Setup

Our implementation makes use of the Distributed Data
Mining Toolkit (DDMT)1– a distributed data mining devel-
opment environment from DIADIC research lab at UMBC.
DDMT uses topological information which can be generate
by BRITE2, a universal topology generator from Boston
University. In our simulations we used topologies generated
according to theBarabasi Albert (BA)model, which is often
considered a reasonable model for the Internet. BA also defines
delays for network edges, which are the basis for our time
measurement3. On top of the network generated by BRITE,
we overlayed a spanning tree.

The data used in the simulations was generated using a
mixture of Gaussians inRd. Every time a simulated peer
needed an additional data point, it sampledd Gaussians and
multiplied the resulting vector with ad× d covariance matrix
in which the diagonal elements were all 1.0’s while the off-
diagonal elements were chosen uniformly between 1.0 and

1http://www.umbc.edu/ddm/wiki/software/DDMT
2http://www.cs.bu.edu/brite/
3Wall time is meaningless when simulating thousands of computers on a

single PC.
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(c) Typical messaging throughout an experi-
ment

Fig. 2. A typical experiment is run for 10 equal length epochs. The epochs have very similar means, and very large variance. Quality and overall cost are
measured across the entire experiment – including transitional phases.

2.0. Alternatively, 10% of the points were chosen uniformly
at random in the range ofµ ± 3σ. At controlled intervals,
the means of the Gaussians were changed, thereby creating an
epoch change. A typical data in two dimensions can be seen in
Figure 2(a). We preferred synthetic data because of the large
number of factors (twelve, in our analysis) which influence the
behavior of an algorithm, and the desire to perform a tightly
controlled experiment in order to understand the behavior of
a complex algorithm which operates in an equally as complex
environment.

The two most important qualities measured in our experi-
ments are thequality of the result and thecost of the algo-
rithm. Quality is defined differently for the L2 thresholding
algorithm, the mean monitoring algorithm, and thek-means
algorithm.

For the L2 thresholding algorithm, quality is measured in
terms of the number of peers correctly computing an alert
i.e. the percentage of peers for whom

∥

∥Ki

∥

∥ < ǫ when
∥

∥G
∥

∥ < ǫ, and the percentage of peers for whom
∥

∥Ki

∥

∥ ≥ ǫ

when
∥

∥G
∥

∥ ≥ ǫ. We measure the maximal, average and
minimal quality over all the peers (averaged over a number
of different experiments). Quality is reported in three different
scenarios: overall quality, averaged over the entire experiment;
and quality on stationary data, measured separately for periods
in which the mean of the data is inside theǫ-circle

(
∥

∥G
∥

∥ < ǫ
)

and for periods in which the means of the data is outside the
circle

(
∥

∥G
∥

∥ ≥ ǫ
)

.
For the mean monitoring algorithm, quality is the average

distance betweenG and the computed mean vectorµ. We plot,
separately, the overall quality (during the entire experiment)
and the quality after the broadcast phase ended.

Lastly, for the k-means algorithm, quality is defined as
the distance between the solution of our algorithm and that
computed by a centralized algorithm, given all the data of all
of the peers.

We have measured the cost of the algorithm according
to the frequency in which messages are sent by each peer.
Because of the leaky bucket mechanism which is part of the
algorithm, the rate of messages per average peer is bounded
by two for every L time units (one to each neighbor, for
an average of two neighbors per peer). The trivial algorithm
that floods every change in the data would send messages
at this rate. The communication cost of our algorithms is

thus defined in terms of normalized messages - the portion
of this maximal rate which the algorithm uses. Thus, 0.1
normalized messages means that nine times out of ten the
algorithm manages to avoid sending a message. We report
both overall cost, which includes the stationary and transitional
phases of the experiment (and thus is necessarily higher), and
the monitoring cost, which only refers to stationary periods.
The monitoring cost is the cost paid by the algorithm even
if the data remains stationary; hence, it measures the “wasted
effort” of the algorithm. We also separate, where appropriate,
messages pertaining to the computation of the L2 thresholding
algorithm from those used for convergecast and broadcast of
statistics.

There are many factors which may influence the perfor-
mance of the algorithms. First, are those pertaining to the
data: the number of dimensionsd, the covarianceσ, and the
distance between the means of the Gaussians of the different
epochs (the algorithm is oblivious to the actual values of the
means), and the length of the epochsT . Second, there are
factors pertaining to the system: the topology, the number of
peers, and the size of the local data. Last, there are control
arguments of the algorithm: most importantlyǫ – the desired
alert threshold, and then alsoL – the maximal frequency of
messages. In all the experiments that we report in this section,
one parameter of the system was changed and the others were
kept at their default values. The default values were : number
of peers = 1000,|Xi,i| = 800, ǫ = 2, d = 5, L = 500
(where the average edge delay is about 1100 time units), and
the Frobenius norm of the covariance of the data‖σ‖F at
5.0. We selected the distance between the means so that the
rates of false negatives and false positives are about equal.
More specifically, the means for one of the epochs was +2
along each dimension and for the other it was -2 along each
dimension. For each selection of the parameters, we ran the
experiment for a long period of simulated time, allowing 10
epochs to occur.

A typical experiment is described in Figure 2(b) and 2(c).
In the experiment, after every 2× 105 simulator ticks, the data
distribution is changed, thereby creating an epoch change.To
start with, every peer is given the same mean as the mean of
the Gaussian. Thus a very high percentage (∼ 100 %) of the
peers states that

∥

∥G
∥

∥ < ǫ. After the aforesaid number (2×105)
of simulator ticks, we change the Gaussian without changing
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Algorithm 4 k-Means Monitoring
Input of peer pi: ǫ, L, Xi,i, the set of immediate neighbors
Ni, an initial guess for the centroidsC0, a mitigation
constantτ , the sample sizeb.
Output of peer pi: k centroids such that the average of the
points assigned to every centroid is withinǫ of that centroid.
Data structure of peer pi: A partitioning of Xi,i into k sets
X1

i,i . . . Xk
i,i, a set of centroidsC = {c1, . . . , ck}, for each

centroidj = 1, . . . , k, a flagalertj , a times tamp
last changej, a bufferBj and a counterbj, a flagroot and
a flagphase.
Initialization:
SetC ← C0. Let

X
j
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖
}

. Initialize k

instances of the L2 thresholding algorithm, such that thejth

instance has inputǫ, α, L,
{

x− cj : x ∈ X
j
i,i

}

, Ni. For all
pj ∈ Ni, setbj ← 0, for all j = 1, . . . , k setalertj ← false,
last changej ← −∞, andphase← convergecast

On addition of a new vector x to Xi,i:
Find thecj closest tox and addx− cj to the jth L2
thresholding instance.
On removal of a vector x from Xi,i:
Find thecj closest tox and removex− cj from thejth L2
thresholding instance.
On change inF

(

Ki

)

of the jth instance of the L2
thresholding algorithm:
If

∥

∥Ki

∥

∥ ≥ ǫ andalertj = false then set
last changej ← time(), alertj ← true, and set a timer to
τ time units
If

∥

∥Ki

∥

∥ < ǫ then setalertj ← false

On receiving B, b from pj ∈ Ni:
SetBj ← B, bj ← b and call Convergecast
On timer expiry or call to Convergecast:
If for all ℓ ∈ [1, . . . , k] alertℓ = false then return
Let t←Minℓ=1...k {last messageℓ : alertℓ = true}
Let A be a set ofb samples returned bySample
If time() < t + τ then set a timer tot + τ − time() and
return
If for all pk ∈ Ni except for onebk 6= 0
– Setroot← false, phase← Broadcast

– SendA, |Xi,i|+
∑

m=1... bm to pℓ and return
If for all pk ∈ Ni bk 6= 0
– Let C′ be the centroids resulting from computing the
k-means clustering ofA
– Setroot← true

– SendC′ to self and return
On receiving C′ from pj ∈ Ni or from self:
If phase = convergecast and i > j then return
SetC ← C′

For j = 1 . . . k set

X
j
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖
}

For j = 1 . . . |Ni| set bj ← 0
SendC to all pk 6= pj ∈ Ni

Setphase← Convergecast

On call to Sample:
Return a random sample fromXi,i with probability

1/
(

1 +
∑

m=1...|Ni|
bm

)

or from a bufferBj with

probability bj/
(

|Xi,i|+
∑

m=1...|Ni|
bm

)

the mean given to each peer. Thus, for the next epoch, we
see that a very low percentage of the peers (∼ 0 %) output
that

∥

∥G
∥

∥ < ǫ. For the cost of the algorithm in Figure 2(c),
we see that messages exchanged during the stationary phase
is low. Many messages are, however, exchanged as soon as
the epoch changes. This is expected since all the peers need
to communicate in order to get convinced that the distribution
has indeed changed. The number of messages decreases once
the distribution becomes stable again.

B. Experiments with Local L2 Thresholding Algorithm

The L2 thresholding algorithm is the simplest one we
present here. In our experiments, we use the L2 thresholding
to establish the scalability of the algorithms with respectto
both the number of peers and the dimensionality of the data,
and the dependency of the algorithm on the main parameters
– the norm of the covarianceσ, the size of the local data set,
the toleranceǫ, and the bucket sizeL.
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Fig. 3. Scalability of Local L2 algorithm with respect to thenumber of
peers.
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Fig. 4. Scalability of Local L2 algorithm with respect to thedimension of
the domain.

In Figures 3 and 4, we analyze the scalability of the local L2
algorithm. As Figure 3(a) and Figure 3(b) show, the average
quality and cost of the algorithm converge to a constant as
the number of peers increase. This typifies local algorithms–
because the computation is local, the total number of peers do
not affect performance. Hence, there could be no deterioration
in quality or cost. Similarly, the number of messages per
peer become a constant – typical to local algorithms. Figure
4(a) and Figure 4(b) show the scalability with respect to the
dimension of the problem. As shown in the figures, quality
does not deteriorate when the dimension of the problem is
increased. Also note that the cost increases approximately
linearly with the dimension. This independence of the quality
can be explained if one thinks of what the algorithm does
in terms of domain linearization. We hypothesis that when
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the mean of the data is outside the circle, most peers tend
to select the same half-space. If this is true then the problem
is projected along the vector defining that half-space – i.e.,
becomes uni-dimensional. Inside the circle, the problem is
again uni-dimensional: If thought about in terms of the polar
coordinate system (rooted at the center of the circle), thenthe
only dimension on which the algorithm depends is the radius.
The dependency of the cost on the dimension stems from the
linear dependence of the variance of the data on the number of
Gaussians, the variance of whom is constant. This was proved
in experiments not included here.

In Figures 5, 6, 7 and 8 we explore the dependency of the L2
algorithm on different parametersviz. Frobenius norm of the
covariance of the dataσ (‖σ‖F =

∑

i=1...m

∑

j=1...n |σi,j |2),
the size of the local data buffer|Xi,i|, the alert thresholdǫ,
and the size of the leaky bucketL. As noted earlier, in each
experiment one parameter was varied and the rest were kept
at their default values.
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Fig. 5. Dependency of cost and quality of L2 thresholding on‖σ‖F . Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall costand cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The first pair of figures, Figure 5(a) and Figure 5(b), outline
the dependency of the quality and the cost on the covariance
of the data (σ = AE) whereA is the covariance matrix and
E is the variance of the gaussians. MatrixA is as defined
in Section VI-A while E is the column vector representing
the variance of the gaussians and takes the values 5, 10, 15
or 25. For epochs with

∥

∥G
∥

∥ < ǫ, the maximal, the average,
and the minimal quality in every experiment decrease linearly
with the variance (from around99% on average to around
96%). Epochs with

∥

∥G
∥

∥ > ǫ, on the other hand, retained
very high quality, regardless of the level of variance. The
overall quality also decreases linearly from around 97% to
84%, apparently resulting from slower convergence on every
epoch change. As for the cost of the algorithm, this increases
as the square root of‖σ‖F (i.e., linear to the variance), both
for the stationary and overall period. Nevertheless, even with
the highest variance, the cost stayed far from the theoretical
maximum of two messages per peer per leaky bucket period.

The second pair of figures, Figure 6(a) and Figure 6(b),
shows that the variance can be controlled by increasing the
local data. As|Xi,i| increases, the quality increases, and cost
decreases, proportional to

√

|Xi,i|. The cause of that is clearly
the relation of the variance of an i.i.d. sample to the sample
size which is inverse of the square root.
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Fig. 6. Dependency of cost and quality of L2 thresholding on|Xi,i|. Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall costand cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The third pair of figures, Figure 7(a) and Figure 7(b), present
the effect of changingǫ on both the cost and quality of
the algorithm. As can be seen, below a certain point, the
number of false positives grows drastically. The number of
false negatives, on the other hand, remains constant regardless
of ǫ. When ǫ is about two, the distances of the two means
of the data (for the two epochs) from the boundary of the
circle are approximately the same and hence the rates of false
positives and false negatives are approximately the same too.
As ǫ decreases, it becomes increasingly difficult to judge if the
mean of the data is inside the smaller circle and increasingly
easier to judge that the mean is outside the circle. Thus, the
number of false positives increase. The cost of the algorithm
decreases linearly asǫ grows from 0.5 to 2.0, and reaches
nearly zero forǫ = 3. Note that even for a fairly lowǫ = 0.5,
the number of messages per peer per leaky bucket period is
around 0.75, which is far less than the theoretical maximum
of 2.
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Fig. 7. Dependency of cost and quality of L2 thresholding onǫ. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost andcost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

Figure 8(a) and Figure 8(b) explore the dependency of
the quality and the cost on the size of the leaky bucketL.
Interestingly, the reduction in cost here is far faster thanthe
reduction in quality, with the optimal point (assuming 1:1
relation between cost and quality) somewhere between 100
time units and 500 time units. It should be noted that the
average delay BRITE assigned to an edge is around 1100
time units. This shows that even a very permissive leaky
bucket mechanism is sufficient to greatly limit the number
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of messages.
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Fig. 8. Dependency of cost and quality of L2 thresholding onL. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost andcost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

We conclude that the L2 thresholding provides a moderate
rate of false positives even for noisy data and an excellent rate
of false negatives regardless of the noise. It requires little com-
munication overhead during stationary periods. Furthermore,
the algorithm is highly scalable – both with respect to the
number of peers and dimensionality – because performance
is independent of the number of peers and dimension of the
problem.

C. Experiments with Means-Monitoring

Having explored the effects of the different parameters of
the L2 thresholding algorithm, we now shift our focus on the
experiments with the mean monitoring algorithm. We have
explored the three most important parameters that affect the
behavior of the mean monitoring algorithm:τ – the alert
mitigation period,T – the length of an epoch, andǫ – the
alert threshold.
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Fig. 9. Dependency of cost and quality of mean monitoring on the alert
mitigation periodτ .

Figure 9, 10 and 11 summarize the results of these experi-
ments. As can be seen, the quality, measured by the distance
of the actual means vectorG from the computed oneµ is
excellent in all three graphs. Also shown are the cost graphs
with separate plots for the L2 messages (on the right axis) and
the number of convergecast rounds – each costs two messages
per peer on average – (on the left axis) per epoch.

In Figure 9(a), the average distance betweenG and µ

decreases as the alert mitigation period(τ) is decreased for
the entire length of the experiment. This is as expected, since,
with a smaller τ , the peers can rebuild the model more
frequently, resulting in more accurate models. On the other

hand, the quality after the data collection is extremely good
and is independent ofτ . With increasingτ , the number of
convergecast rounds per epoch decreases (from three to two
on average) as shown in Figure 9(b). In our analysis, this
results from a decrease in the number of false alerts.
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Fig. 10. Dependency of cost and quality of mean monitoring onthe length
of epochT .

Figure 10(a) depicts the relation of the quality (both overall
and stationary periods) toT . The average distance between
the estimated mean vector and the actual one decreases as
the epoch lengthT increases. The reason is the following: at
each epoch, several convergecast rounds usually occur. The
later the round is, the less polluted is the data by remnants
of the previous epoch – and thus the more accurate isµ.
Thus, when the epoch length increases, the proportion of these
later µ’s, which are highly accurate, increases in the overall
quality leading to a more accurate average. Figure 10(b) shows
a similar trend for the cost incurred. One can see that the
number of L2 messages decrease asT increases. Clearly, the
more accurateµ is, the less monitoring messages are sent.
Therefore with increasingT , the quality increases and cost
decreases in the later rounds and these effects are reflectedin
the figures.

Finally, the average distance betweenG and µ decreases
as ǫ decreases. This is as expected, since with decreasingǫ,
the L2 algorithm ensures that these two quantities be brought
closer to each other and thus the average distance between
them decreases. The cost of the algorithm, however, shows
the reverse trend. This result is intuitive – with increasing ǫ,
the algorithm has a larger region in which to bound the global
average and thus the problem becomes easier, and hence less
costly, to solve.
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Fig. 11. Dependency of cost and quality of mean monitoring onthe alert
thresholdǫ.

On the whole, quality of the mean monitoring algorithm
outcome behaves well with respect to all the three parameters
influencing it. The monitoring costi.e. L2 messages is also
low. Furthermore, on an average, the number of convergecast
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rounds per epoch is around three – which can easily be reduced
further by using a longerτ as the default value.

D. Experiments withk-Means Monitoring
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Fig. 12. Dependency of quality and cost ofk-means monitoring on the
sample size

In this set of experiments our goal is to investigate the
effect of the sample size on thek-means monitoring algorithm.
To do that we compare the results of our algorithm to those
of a centralized algorithm that processed the entire data. We
compute the distance between each centroid computed by the
peer-to-peer algorithm and the closest centroid computed by
the centralized one. Since our algorithm is not only distributed
but also sample-based, we include for comparison the results
of centralized algorithm which takes a sample from the entire
data as its input. The most outstanding result, seen in Figure
12(a), is that most of the error of the distributed algorithmis
due to sampling and not due to decentralization. The error,
both average, best case, and worst case, is very similar to that
of the centralized sample-based algorithm. This is significant
in two ways. First, the decentralized algorithm is obviously
an alternative to centralization; especially consideringthe
far lower communication cost. Secondly, the error of the
decentralized algorithm can be easily controlled by increasing
the sample size.

The costs ofk-means monitoring have to be separated to
those related to monitoring the current centroids and those
related to the collection of the sample. Figure 12(b) presents
the costs of monitoring a single centroid and the number of
times data was collected per epoch. These could be multiplied
by k to bound the total costs (note that messages relating
to different centroids can be piggybacked on each other).
The cost of monitoring decreases drastically with increasing
sample size – resulting from the better accuracy provided by
the larger sample. Also there is a decrease in the number of
convergecast rounds as the sample size increases. The default
value of the alert mitigation factorτ in this experimental setup
was 500. For any sample size greater than 2000, the number
of convergecast rounds is about two per epoch – in the first
round, it seems, the data is so much polluted by data from
the previous epoch that a new round is immediately triggered.
As noted earlier, this can be further decreased using a larger
value ofτ .

VII. R ELATED WORK

Algorithms for large distributed systems have been devel-
oped over the last half decade. These can be roughly classified

into three categories: convergecast based or centralized algo-
rithms, gossip based algorithms, and local algorithms. Some
best-effort heuristics [11], [12], [13] were suggested as well.

The first category, convergecast based algorithms, is perhaps
the simplest. Algorithms such as [14] provide generic solutions
– suitable for the computation of multiple functions. They
are also extremely communication efficient: computing the
average, for instance, only requires one message from each
peer. Some of these algorithms can be extremely synchronized
– every round of computation taking a lot of time. This
becomes very problematic when the data is dynamic and
computation has to be iterated frequently. Other, such as
STAR [15] can dynamically tune accuracy and timeliness vs.
communication overhead. The most thorough implementation
of this approach is possibly the Astrolabe system [16] which
implement a general purpose infrastructure for distributed
system monitoring.

The second category, gossip based algorithms, relies on the
properties of random walks on graphs to provide probabilistic
estimates for various statistics of data stored in the graph.
Gossip based computation was first introduced by Kempeet
al. [17], and have, since then, been expanded to general graphs
by Boydet al. [18]. The first gossip based algorithms required
that the algorithm be executed from scratch if the data changes
in order to maintain those guarantees. This problem was later
addressed by Jelasityet al. [19]. The main benefit of our
algorithm with respect to gossiping is that it is data driven.
Thus, it is far more efficient than gossiping when the changes
are stationary.

Local algorithms were first discussed by Afeket al. [20],
Linial [21], and Naor and Stockmeyer [22], in the context of
graph theory. Kutten and Peleg introduced local algorithmsin
which the input is data which is stored at the graph vertices,
rather than the graph itself [23]. The first application of
local algorithms to peer-to-peer data mining is the Majority-
Rule algorithm by Wolff and Schuster [1]. Since then, local
algorithms were developed for other data mining taskse.g.,
decision tree induction [24], multivariate regression [6], outlier
detection [3], L2 norm monitoring [4], approximated sum [25],
and more. The algorithm for L2 thresholding, and an initial
application of that algorithm fork-means monitoring were first
presented in a previous publication by the authors of this paper
[4].

VIII. C ONCLUSIONS ANDOPEN QUESTIONS

In this paper we present a generic algorithm which can
computeany ordinal function of the average data in large
distributed system. We present a number of interesting appli-
cations for this generic algorithm. Besides direct contributions
to the calculation of L2 norm, the mean, andk-means in peer-
to-peer networks, we also suggest a new reactive approach in
which data mining models are computed by an approximate or
heuristic method and are then efficiently judged by an efficient
local algorithm.

This work leaves several interesting open questions. The
first is the question of describing the “hardness” of locally
computing a certain functionF – its “locallability”. For
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instance, it is simple to show that majority voting lends itself
better for local computation than the parity function. However,
there is lack of an orderly method by which the hardness
of these and other functions can be discussed. The second
interesting question is the question of robustness of a generic
local algorithm for general topologies. Last, in view of our
generic algorithm it would be interesting to revisit Naor’sand
Stockmeyer’s question [22] regarding the limitations of local
computation.
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